×

zbMATH — the first resource for mathematics

Geometric control theory. (English) Zbl 0639.93015
Translation from Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 23, 197-280 (Russian) (1985; Zbl 0609.93015).

MSC:
93B27 Geometric methods
49K15 Optimality conditions for problems involving ordinary differential equations
93C10 Nonlinear systems in control theory
49-02 Research exposition (monographs, survey articles) pertaining to calculus of variations and optimal control
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
93B03 Attainable sets, reachability
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
93C15 Control/observation systems governed by ordinary differential equations
93B07 Observability
93B05 Controllability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. A. Agladze and Yu. P. Ponomarev, ?The group-theoretic approach to the analysis of controllable dynamical systems,? Kibernetika, (Kiev), No. 25, 8?11 (1984)
[2] A. A. Agrachev, ?A necessary condition for second-order optimality in the general nonlinear case,? Mat. Sb.,102, No. 4, 551?568 (1977).
[3] A. A. Agrachev, ?Necessary and sufficient extremal conditions for smooth controllable systems,? ICM Warsaw, Short Communications XII, Section 14: Control theory and optimization, p. 29 (1982).
[4] A. A. Agrachev and S. A. Vakhrameev, ?Chronological series and the Cauchy-Kovalevskaya theorem,? in: Problems of geometry. Vol. 12, Itogi nauki i tekhn. All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 165?189 (1981).
[5] A. A. Agrachev and S. A. Vakhrameev, ?Nonlinear control systems of constant rank and bang-bang conditions for extremal controls,? Dokl. Akad. Nauk SSSR,279, No. 2, 265?269 (1984).
[6] A. A. Agrachev and S. A. Vakhrameev, ?Control-linear systems of constant rank and bang-bang conditions for extremal controls,? Uspekhi Mat. Nauk (in press).
[7] A. A. Agrachev, S. A. Vakhrameev, and R. V. Gamkrelidze, ?Differential-geometric and group-theoretic methods in optimal control theory,? in: Problems of Geometry. Vol. 14, Itogi nauki i tekhn. All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 3?56 (1983). · Zbl 0542.93045
[8] A. A. Agrachev and R. V. Gamkrelidze, ?The principle of second-order optimality for a time-optimal problem,? Mat. Sb.,100, No. 4, 610?643 (1976). · Zbl 0377.49014
[9] A. A. Agrachev and R. V. Gamkrelidze, ?Exponential representation of currents and the chronological calculus,? Mat. Sb.,107, No. 4, 467?532 (1978). · Zbl 0408.34044
[10] A. A. Agrachev and R. V. Gamkrelidze, ?Chronological algebras and nonstationary vector fields,? in: Problems of geometry. Vol. 11, Itogi nauki i tekhn. All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow, 135?176 (1980). · Zbl 0473.58021
[11] A. A. Agrachev and R. V. Gamkrelidze, ?The index of extremality and quasi-extremality,? Dokl. Akad. Nauk SSSR (1985) (in press). · Zbl 0587.49018
[12] A. A. Agrachev and R. V. Gamkrelidze, ?The Morse and Maslov indices for extremals of controllable systems,? Dokl. Akad. Nauk SSSR (1985) (in press).
[13] A. A. Agrachev and A. V. Sarychev, ?On the reduction of a smooth linear control system,? Mat. Sb. (in press). · Zbl 0678.49034
[14] M. Kh. Aizenshtein and M. I. Shpil’berg, ?On the structure of orbits of piecewise linear action of a control group.? in: ?Questions of group theory and homological algebra,? Yaroslavl’, 70?73 (1983).
[15] Yu. N. Andreev, ?Differential-geometric methods in control theory,? Avtomat. i Telemekh.,10, 5?46 (1982).
[16] A. P. Andryushchenko, ?Controllability of a quantum antiharmonic oscillator,? Avtomatika (Kiev), No. 2, 66?74 (1984).
[17] A. P. Andryushchenko, ?Controllability of a three-level quantum system in strong fields,? Avtomatika (Kiev), No. 5, 38?42 (1984).
[18] V. I. Arnol’d, ?Mathematical methods of classical mechanics,? Nauka, Moscow (1974).
[19] S. V. Belikov and S. N. Samborskii, ?Regions of attainability for systems described by partial differential equations,? Sib. Mat. Zh.,24, No. 4, 3?12 (1983).
[20] I. F. Boretskii and V. G. Pavlov, ?On some properties of dynamical systems connected with their symmetry,? Kibernet. i Vychisl. Tekh. (Kiev), No. 47, 25?34 (1980).
[21] V. N. Brandin and Yu. M. Kostyukovskii, ?Global conditions for observability of nonlinear dynamical systems,? Avtomat. i Telemekh., No. 10, 18?25 (1975).
[22] V. N. Brandin and G. N. Razorenov, ?Decomposability conditions for nonlinear dynamical systems,? Avtomat. i Telemekh., No. 12, 5?12 (1976). · Zbl 0363.93023
[23] A. G. Butkovskii ?A differential-geometric method for the constructive solution of controllability and finite control problems,? Avtomat. i Telemekh., No. 1, 5?18 (1982).
[24] Dzh. Varga, ?Optimal control of differential and functional equations,? Nauka, Moscow (1977).
[25] V. P. Viflyantsev, ?On the integrability of distributions with singularities,? Mat. Zametki,26, No. 6, 921?929 (1979). · Zbl 0422.58004
[26] R. V. Gamkrelidze, ?Foundations of optimal control,? IzdatePstvo Tbilis. Univ., Tbilisi (1977).
[27] K. G. Garaev, ?Methods of the theory of Lie groups of transformations in the problem of reduction of optimal processes,? in: ?Complex control systems,? Kiev, 18?27 (1978).
[28] A. A. Davydov, ?Singularities of the boundary of attainability in two-dimensional controllable systems,? Uspekhi Mat. Nauk,37, No. 3, 183?184 (1982).
[29] A. A. Davydov, ?Quasi-Lipschitz conditions on the boundary of attainability,? MGU Moscow (1982).
[30] A. A. Davydov, ?The boundary of attainability of a multi-dimensional controllable system,? Tr. Tbilis. Univ., No. 232?233, 78?96 (1982).
[31] P. I. Dudnikov and S. N. Samborskii, ?A controllability criterion for systems in a Banach space,? Sib. Mat. Zh.,25, 649?653 (1980).
[32] V. I. Elkin, ?Some questions of aggregation of controllability of dynamical systems,? in: ?Proceedings of the 21st scientific conf. of the Moscow Physico-Technical Institute, 1975, Ser. Aerophysics and applied mathematics,? Dolgoprudnyi, 180?183 (1976).
[33] V. I. Elkin, ?On an algebraic method for studying controllable dynamical systems,? in: Proceedings of the 22nd scientific conf. of the Moscow Physico-Technical Institute, 1976, Ser. Aerophysics and applied mathematics,? Dolgoprudnyi, 191?194 (1977).
[34] V. I. Elkin, ?Invariance of controllable systems,? in: ?Proceedings of the 23rd scientific conf. of the Moscow Physico-Technical Institute, 1977, Ser. Aerophysics and applied mathematics,? Dolgoprudnyi, 155?157 (1978).
[35] V. I. Elkin, ?On aggregation conditions for controllable dynamical systems,? Zh. vychisl. mat. i mat. fiz.,18, No. 4, 928?934 (1978).
[36] V. I. Elkin, ?An algebraic approach in the theory of invariance of controllable systems,? in: ?Complex control systems,? Kiev, 21?32 (1979).
[37] V. I. Elkin, ?Realization, invariance, and autonomy of nonlinear controllable systems,? Avtomat. i Telemekh., No. 7, 36?44 (1981).
[38] V. I. Elkin, ?Synthesis of perturbation-invariant nonlinear controllable dynamical systems,? Kibernet. i vychisl. tekhn. (Kiev), No. 51, 32?41 (1981).
[39] V. I. Elkin, ?Observable realization of nonlinear dynamical systems,? Kibernet. i vychisl. tekhn. (Kiev), No. 54, 39?45 (1982).
[40] V. I. Elkin, ?Transformation groups and controllable systems,? Kibernet. i vychisl. tekhn. (Kiev), No. 58, 22?27 (1983).
[41] V. I. Elkin, ?Methods of algebra and geometry in control theory. Controllable dynamical systems,? VTs Akad. Nauk SSSR, Moscow (1984).
[42] V. I. Elkin, ?On a differential-geometric approach to the study of partial differential equations,? Kibernet. i vychisl. tekhn. (Kiev), No. 62, 38?43 (1984).
[43] V. I. Elkin, Yu. N. Pavlovskii, A. N. Chernoplekov, and G. N. Yakovenko, ?Factorization problems for controllable dynamical systems and certain of their applications,? in: ?Group-theoretic methods in mechanics. Proceedings of the International Symposium, Novosibirsk, 1978,? Novosibirsk, 108?117 (1978).
[44] A. A. Zhevnin and A. P. Krishchenko, ?Controllability of nonlinear systems and the synthesis of control algorithms,? Dokl. Akad. Nauk SSSR,258, No. 4, 805?809 (1981). · Zbl 0497.93007
[45] A. A. Zhevnin, A. P. Krishchenko, and Yu. V. Glushko, ?Controllability and observability of nonlinear systems,? in: ?Analytic methods of synthesis of regulators,? Saratov, 3?11 (1981). · Zbl 0518.93010
[46] A. A. Zhevnin, A. P. Krishchenko, and Yu. V. Glushko, ?Controllability and observability of nonlinear systems and synthesis of terminal control,? Dokl. Akad. Nauk SSSR,266, No. 4, 807?811 (1982). · Zbl 0518.93010
[47] A. D. Ioffe and V. M. Tikhomirov, ?Theory of extremal problems,? Nauka, Moscow (1974).
[48] V. V. Kiselev, ?On the number of switchings in a time-optimal problem for bilinear systems,? in: ?Optimality and control of mechanical systems,? Leningrad, 16?22 (1983).
[49] A. P. Krishchenko, ?Controllability of nonlinear systems and the structure of their sets of attainability,? Tr. MVTU, No. 398, 108?114 (1983).
[50] A. P. Krishchenko, ?The study of controllability and sets of attainability of nonlinear control systems,? Avtomat. i Telemekh., No. 6, 30?36 (1984).
[51] A. P. Krishchenko, ?Controllability and sets of attainability of nonlinear nonstationary systems,? Kibernet. i vychisl. tekhn. (Kiev), No. 62, 3?10 (1984).
[52] S. A. Kutepov, ?On families of diffeomorphisms of control-linear systems,? in: ?Proceedings of the 25th Scientific conf. of the Moscow Physico-Technical Institute, 1979, Ser. Aerophysics and applied mathematics,? Moscow, 131?133 (1980).
[53] S. A. Kutepov, ?On tangential approximations of sets of attainability of linear-analytic systems,? Kibernet. i vychisl. tekh. (Kiev), No. 51, 22?29 (1981).
[54] S. A. Kutepov, ?Absolute stability of bilinear systems with a compact Levi factor,? Kibernet. i vychisl. tekhn. (Kiev), No. 62, 28?33 (1984).
[55] S. A. Kutepov and G. N. Yakovenko, ?Group-theoretic aspects of optimal control,? Kibernet. i vychisl. tekhn. (Kiev), No. 58, 28?35, (1983). · Zbl 0577.49010
[56] A. I. Kukhtenko, ?On the axiomatic construction of the mathematical theory of systems,? Kibernet. i vychisl. tekhn. Resp. mezhved. sb., No. 31, 3?25 (1976).
[57] A. I. Kukhtenko, ?The theory of algebraic invariants in problems of automatic control,? Kibernet. i vychisl. tekhn. Resp. mezhved. sb., No. 39, 3?16 (1978).
[58] A. I. Kukhtenko, ?What can ?abstract systems theory? contribute to the science of control?? Avtomatika (Kiev), No. 4, 3?14 (1979). · Zbl 0437.93001
[59] A. I. Kukhtenko, ?On the abstract theory of controllable dynamical systems,? in: ?Cybernetic methods of planning, projection, and control,? Kiev, 93?106 (1982).
[60] A. I. Kukhtenko, ?Abstract systems theory (AST) and applied studies,? Kibernet. i vychisl. tekhn. (Kiev), No. 54, 3?9 (1982).
[61] A. I. Kukhtenko, V. N. Semenov, and V. V. Udilov, ?Geometric and abstract-algebraic methods in the theory of automatic control,? Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 27, 3?20 (1975).
[62] E. B. Lee and L. Markus, ?Foundations of optimal control theory,? John Wiley & Sons, New York (1967). · Zbl 0159.13201
[63] A. M. Meilakhs, ?On stabilization of nonlinear controllable systems,? Différents. Uravneniya,12, No. 3, 1313?1315 (1976).
[64] A. M. Meilakhs, ?On the orientation of an inert rigid body,? Différents. Uravneniya,12, No. 11, 2101 (1976).
[65] A. M. Meilakhs, ?On the bang-bang stabilization of nonlinear controllable systems,? Différents. Uravneniya,13, No. 7, 1333?1334, (1977).
[66] V. M. Mikhalevich, ?The problem of optimal control on a manifold,? Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 39, 94?98 (1978). · Zbl 0378.49016
[67] V. M. Mikhalevich and V. A. Yatsenko, ?A bilinear logico-dynamical model for a controllable process,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 36?39 (1982).
[68] A. Ya. Narmanov, ?On the structure of the set of controllability of continuously balanced control systems,? Vest. LGU, No. 13, 50?55 (1981).
[69] A. Ya. Narmanov, ?On the sets of controllability of control systems that are strata of a stratification of codimension 1,? Différents. Uravneniya,19, No. 9, 1627?1630 (1983).
[70] V. G. Pavlov, ?Systems invariant with respect to groups of transformations,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 58, 17?22 (1983).
[71] Yu. N. Pavlovskii, ?Group properties of controllable dynamical systems and phase organizational structures. I. Groups characterizing dynamical systems,? Zh. Vychisl. Mat. i Mat. Fiz.,14, No. 4, 862?872 (1974).
[72] Yu. N. Pavlovskii, ?Group properties of controllable dynamical systems and phase organizational structures. II. Phase organizational structures,? Zh. Vychisl. Mat. i Mat. Fiz.,14, No. 5, 1093?1103 (1974).
[73] Yu. N. Pavlovskii, ?Aggregation, decomposition, group properties, and decomposition structures of dynamical systems,? Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 39, 3?16 (1978).
[74] Yu. N. Pavlovskii, ?Methods of factorization and decomposition in systems theory,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 9?15 (1982).
[75] Yu. N. Pavlovskii, ?Control of decomposition structures,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 58, 11?16 (1983).
[76] Yu. N. Pavlovskii, ?The theory of factorization and decomposition of controllable dynamical systems and its applications,? Izv. Akad. Nauk SSSR. Tekhn. Kibernetika, No. 2, 45?47 (1984).
[77] Yu. N. Pavlovskii and G. N. Yakovenko, ?Groups admitted by dynamical systems,? in: ?Optimization methods and their applications,? Novosibirsk, 155?189 (1982).
[78] N. N. Petrov, ?On local controllability,? Differents. Uravneniya,12, No. 12, 2214?2222 (1976).
[79] N. N. Petrov, ?A remark on plane analytic control systems,? Differents. Uravneniya?,15, No. 4, 743?744 (1979).
[80] N. N. Petrov, ?On symmetric completely controllable control systems,? Differents. Uravneniya,15, No. 11, 1980?1986 (1979).
[81] N. N. Petrov, ?Controllable systems and stratification theory,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 58, 8?11 (1983).
[82] M. A. Pinskii, ?On the equivalence of controllable systems with continuous symmetry group,? Différents. Uravneniya,18, No. 6, 1089?1091 (1982).
[83] M. A. Pinskii, ?On a group criterion for equivalence of controllable dynamical systems,? in: ?Studies in the theory of multiply connected systems,? Moscow, 55?60 (1982).
[84] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, ?Mathematical theory of optimal processes,? Nauka, Moscow (1969).
[85] K. A. Pupkov and E. B. Frolov, ?On an attainability property of nonlinear systems on manifolds. I,? Izv. Vuzov., Mat., No. 10, 61?71 (1978).
[86] B. N. Pshenichnyi and V. M. Mikhalevich, ?The problem of optimal control on a manifold,? Dokl. Akad. Nauk Uk.SSR, A, No. 1, 70?73 (1978).
[87] A. V. Rudenko, ?Differential topology methods in the problem of local controllability,? in: ?Complex control systems,? Kiev, 16?26 (1980).
[88] A. V. Rudenko, ?On a representation of the sets of attainability of nonlinear systems,? Avtomatika (Kiev), No. 5, 42?48 (1980). · Zbl 0465.49027
[89] A. V. Rudenko and V. N. Semenov, ?Smooth branches of multi-valued mappings in the problem of local controllability,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 62, 21?28 (1984).
[90] S. N. Samborskii, ?Involutive differential systems in a Banach space and sets of attainability for controllable systems,? Ukr. Mat. Zh.,33, No. 2, 220?226 (1981). · doi:10.1007/BF01086076
[91] A. V. Sarychev, ?Stability of mappings of Hubert space and equivalence of controllable systems,? Mat. Sb.,113, No. 1, 146?160 (1980). · Zbl 0468.93039
[92] A. V. Sarychev, ?The index of second variation of a controllable system,? Mat. Sb.,113, No. 3, 464?486 (1980).
[93] V. N. Semenov, ?Toward a geometric theory of control systems. Part I,? in: ?Technical Cybernetics, No. 16,? Kiev, 100?108 (1970).
[94] V. N. Semenov, ?Toward a geometric theory of control systems. Part II,? in: ?Technical Cybernetics, No. 16,? Kiev, 109?120 (1970).
[95] V. N. Semenov, ?On controllability of nonlinear dynamical systems,? Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., issue 8, 34?40 (1971).
[96] V. N. Semenov, ?On certain abstract-algebraic models and methods of studying dynamical systems,? Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., issue 23, 33?40 (1974).
[97] V. N. Semenov, ?The algebraic structure of smooth dynamical control systems,? in: ?Complex control systems,? Kiev, 3?15 (1974).
[98] V. N. Semenov, ?Dynamical control systems on smooth manifolds,? Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 31, 36?44 (1976).
[99] V. N. Semenov, ?On the geometric aspects of controllability,? in: ?Complex control systems,? Kiev, No. 4, 3?11 (1977).
[100] V. N. Semenov, ?Differential-geometric methods of studying controllable dynamical systems,? Kibernet. i Vychisl. Tekhn., Resp., Mezhved. Sb., No. 39, 63?71 (1978).
[101] I. M. Semenov, ?On the controllability of the equation x=ux,? Mat. Zametki,23, No. 2, 253?259 (1978). · Zbl 0384.93008
[102] T. G. Smirnova, ?On partial aggregation and partially admissible groups,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 31?35 (1982).
[103] K. E. Starkov, ?On the observability of smooth dynamical systems,? in: ?Modelling and optimization of complex control systems,? Moscow, 50?55 (1981).
[104] K. E. Starkov, ?Synthesis of observation functions for certain classes of dynamical systems,? Avtomat. i Telemekh., No. 5, 90?97 (1982).
[105] V. V. Udilov, ?A group-theoretic approach to problems of autonomy, invariance, and sensitivity in controllable dynamical systems,? Kibernet. i Vychisl. Tekh., Resp. Mezhved. Sb., No. 39, 72?83 (1978).
[106] A. Yu. Fedorov, ?Controllability conditions for nonlinear dynamical systems,? Avtomat. i Telemekh., No. 4, 60?71 (1984).
[107] E. B. Frolov, ?The dimension of the region of attainability of nonlinear systems on a manifold and a criterion for attainability,? A collection of articles from the journal, ?Differents. Uravneniya,? Akad. Nauk BSSR, Minsk (1980).
[108] E. B. Frolov and G. A. Fomin, ?Local attainability of nonlinear systems,? Differents. Uravneniya,19, No. 11, 1897?1902 (1983).
[109] A. S. Khokhlov, ?Controllability on a jet manifold,? in: ?Complex control systems,? Kiev, 26?38 (1980).
[110] A. S. Khokhlov, ?Controllability of nonlinear systems and the Frobenius theorem,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 62, 42?43 (1984).
[111] A. K. Chernoplekov, ?Algebraic aspects of the factorization of dynamical systems,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 51, 20?31 (1980).
[112] A. K. Chernoplekov, ?Factorization of variational systems,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 45?51 (1982). · Zbl 0514.93003
[113] G. N. Yakovenko, ?Optimal processes on differential manifolds and continuous groups,? Proceedings of the 17th scientific conference of the Moscow physico-technological institute, 1971. Series ?Aerophysics and applied mathematics,? Dolgoprudnyi, 73?80 (1972).
[114] G. N. Yakovenko, ?A necessary condition for controllability,? in: ?Questions of applied mathematics,? Irkutsk, 108?119 (1975).
[115] G. N. Yakovenko, ?An invariance criterion for controllable systems,? in: ?Optimization methods and the study of operations. Applied mathematics,? Irkutsk, 71?78 (1976).
[116] G. N. Yakovenko, ?A group approach to controllability and invariance of dynamical systems,? Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 39, 26?39 (1978).
[117] G. N. Yakovenko, ?On the group approach to the problem of invariance of systems with control,? in: ?Dynamics of controllable systems,? Novosibirsk, 329?335 (1979).
[118] G. N. Yakovenko, ?Synthesis of optimal control on a Lie group of third order,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 51, 17?22 (1981).
[119] G. N. Yakovenko, ?On the equivalence of mathematical models of ?input-output? type,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 15?20 (1982).
[120] G. N. Yakovenko, ?Control on Lie groups: first integrals, singular controls,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 62, 10?20 (1984).
[121] V. A. Yatsenko, ?The Euler equation on Lie groups and optimal control of bilinear systems,? Kibernet. i Vychisl. Tekhn. (Kiev), No. 58, 78?80 (1983).
[122] Dire Ayels, ?Generic observability of differentiable systems,? SIAM J. Control and Optimiz.,19, No. 5, 595?603 (1981). · Zbl 0474.93016 · doi:10.1137/0319037
[123] Dirc Ayels, ?Controllability for polynomial systems,? Lect. Notes Contr. and Inf. Sci.,63, 542?545 (1984). · doi:10.1007/BFb0006310
[124] A. A. Agrachev and A. V. Sarychev, ?The control of rotation for asymmetric rigid body,? Probl. upr. i teorii inf., (VNR),12, No. 5, 335?347 (1983). · Zbl 0571.70030
[125] F. Albrecht, K. A. Gasse, and N. Wax, ?Reproducibility of linear and nonlinear input-output systems,? J. Math. Anal, and Appl.,79, No. 1, 178?202 (1981). · Zbl 0454.93015 · doi:10.1016/0022-247X(81)90017-2
[126] James T. Aslanis, and Kenneth A. Loparo, ?Control of variable structure systems in the plane,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 3, New York, N. Y., 1132?1137 (1983).
[127] Andrea Bacciotti, ?Sulla continuità della funzione di tempo minimo,? Boll, unione mat. ital.,B15, No. 3, 859?868 (1978). · Zbl 0398.40006
[128] Andrea Bacciotti, ?Structure métrique des orbites de familles de champs de vecteurs et théorie du temps minimum,? SIAM J. Contr. and Optim.,17, No. 2, 311?319 (1979). · Zbl 0412.49021 · doi:10.1137/0317025
[129] Andréa Bacciotti, ?Una nota su ottimalità e estremalità,? Boll, unione mat. ital.,B18, No. 1, 285?294 (1981).
[130] Andrea Bacciotti, ?Controlled periodic solutions of affine systems with recurrent free part,? Ric. Autom.,12, No. 1, 28?32 (1981).
[131] Andrea Bacciottiand G. Stefani, ?Self-accessibility of a set with respect to a multivalued field,? J. Optimiz. Theory and Appl.,31, No. 4, 535?552 (1980). · Zbl 0417.49048 · doi:10.1007/BF00934476
[132] Andrea Bacciotti and G. Stefani, ?The region of attainability of nonlinear systems with unbounded controls,? J. Optimiz. Theory and Appl.,35, No. 1, 57?84 (1981). · Zbl 0441.93019 · doi:10.1007/BF00934704
[133] Andrea Bacciottiand G. Stefani, ?On the relationship between global and local controllability,? Math. Syst. Theory,16, No. 1, 79?91 (1983). · Zbl 0506.93007 · doi:10.1007/BF01744571
[134] J. Baillieul, ?Geometric methods for nonlinear optimal control problems,? J. Optimiz. Theory and Appl.,25, No. 4, 519?548 (1978). · Zbl 0368.49013 · doi:10.1007/BF00933518
[135] J. Baillieul, ?The geometry of homogeneous polynomial dynamical systems,? Nonlinear Anal.: Theory, Meth., and Appl.,4, No. 5, 879?900 (1980). · Zbl 0473.34022 · doi:10.1016/0362-546X(80)90002-4
[136] J. Baillieul, ?Controllability and observability of polynomial dynamical systems,? Nonlinear Anal.: Theory, Meth., and Appl.,5, No. 5, 543?552 (1981). · Zbl 0463.93021 · doi:10.1016/0362-546X(81)90102-4
[137] Safya Belghith and Marie-Minerve Rosset, ?Application des crochets de Lie à un problème de régulation thermique,? C. r., Acad. sci., sér. 1,299, No. 16, 811?814 (1984). · Zbl 0587.49025
[138] D. J. Bell and D. H. Jacobson, ?Singular optimal control problems,? Academic Press, London (1975). · Zbl 0338.49006
[139] M. P. Bendsoe, ?On the existence of observable single-input systems of a simple type,? SIAM J. Contr. and Optim.,19, No. 4, 555?559 (1981). · Zbl 0463.93027 · doi:10.1137/0319034
[140] Tiberio R. M. Bianchini, ?Sul principio del bang-bang per processi di controllo bilineari affini,? Matematiche,32, No. 1, 119?125 (1977). · Zbl 0432.49016
[141] Tiberio R. M. Bianchini and G. Stefani, ?Multivalued fields and control systems with unbounded controls,? Ric. automat.,12, No. 1, 33?49 (1981). · Zbl 0524.49026
[142] Tiberio R. M. Bianchini and P. Zecca, ?Local controllability for autonomous nonlinear systems,? J. Optimiz. Theory and Appl., No. 1, 69?83 (1980). · Zbl 0417.93015 · doi:10.1007/BF00934789
[143] Tiberio R. M. Bianchini and P. Zecca, ?On the attainable set at timeT for multivalued differential equations,? Nonlinear Anal.: Theory, Meth. and Appl.,5, No. 10, 1053?1059 (1981). · Zbl 0469.49028 · doi:10.1016/0362-546X(81)90002-X
[144] B. Bonnard, ?Contrôlabilité des systèmes non-linéaires,? C. r., Acad. sci., sér. 1,292, No. 10, 535?537 (1981).
[145] B. Bonnard, ?Contrôlabilité des systèmes bilinéaires,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, 229?243, Paris (1981).
[146] B. Bonnard, ?Contrôlabilité des systèmes bilinéaires,? Math. Syst. Theory,15, No. 1, 79?92 (1981). · Zbl 0502.93010 · doi:10.1007/BF01786974
[147] B. Bonnard, ?Remarques sur les extrémales singulières en contrôle en temps minimal,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, 519?531, Paris (1983).
[148] B. Bonnard, ?Contrôle de l’attitude d’un satellite rigide,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, 649?658, Paris (1983).
[149] B. Bonnard, ?Contrôlabilité des systèmes mécaniques sur les groupes de Lie,? SIAM J. Contr. and Optim.,22, No. 5, 711?722 (1984). · Zbl 0549.93009 · doi:10.1137/0322045
[150] William M. Boothby, ?Some comments on positive orthant controllability of bilinear systems,? SIAM J. Contr. and Optim.,20, No. 5, 634?644 (1982). · Zbl 0488.93009 · doi:10.1137/0320047
[151] William M. Boothby, ?Some comments on global linearization of nonlinear systems,? Syst. and Contr. Lett.,4, No. 3, 143?147 (1984). · Zbl 0538.93027 · doi:10.1016/S0167-6911(84)80016-X
[152] William M. Boothby and E. N. Wilson, ?Determination of the transitivity of bilinear systems,? SIAM J. Contr. and Optim.,17, No. 2, 212?221 (1979). · Zbl 0406.93037 · doi:10.1137/0317016
[153] R. W. Brockett, ?Differential-geometric methods in systems theory,? IEEE Conf. Decis. and Contr. (Incl. 10th Symp. Adapt. Process), Miami Beach, Fla. 1971, New York, N. Y., 176?180 (1971).
[154] R. W. Brockett, ?System theory on group manifolds and coset spaces,? SIAM J. Contr.10, No. 2, 265?284 (1972). · Zbl 0238.93001 · doi:10.1137/0310021
[155] R. W. Brockett, ?The synthesis of dynamical systems,? Quart. Appl. Math.,30, No. 1, 41?50 (1972). · Zbl 0239.93004 · doi:10.1090/qam/99741
[156] R. W. Brockett, ?Lie algebras and Lie groups in control theory,? Geometr. Meth. Syst. Theory, Dordrecht-Boston, 43?82 (1973). · Zbl 0305.93003
[157] R. W. Brockett, ?Lie theory and control systems defined on spheres,? SIAM J. Appl. Math.,25, No. 2, 213?225 (1973). · Zbl 0272.93003 · doi:10.1137/0125025
[158] R. W. Brockett, ?On the reachable set for bilinear systems,? Lect. Notes Econ. and Math. Syst.,111, 54?63 (1975). · Zbl 0308.49041 · doi:10.1007/978-3-642-47457-6_3
[159] R. W. Brockett, ?Volterra series and geometric control theory,? Automatica,12, No. 2, 167?176 (1976). · Zbl 0342.93027 · doi:10.1016/0005-1098(76)90080-7
[160] R. W. Brockett, ?Functional expansions and higher order necessary conditions in optimal control,? Lect. Notes Econ. and Math. Syst.,131, 111?121 (1976). · doi:10.1007/978-3-642-48895-5_8
[161] R. W. Brockett, ?Finite and infinite dimensional bilinear realizations,? J. Franklin Inst.,301, No. 6, 509?520 (1976). · Zbl 0341.93010 · doi:10.1016/0016-0032(76)90075-2
[162] R. W. Brockett, ?Lie theory, functional expansions and necessary conditions in singular optimal control,? Lect. Notes Math.,680, 68?76 (1978). · Zbl 0403.49017 · doi:10.1007/BFb0065312
[163] R. W. Brockett, ?Feedback invariants for nonlinear systems,? Prepr. 7th World Congress IFAC, V. 2, Pergamon Press, Oxford, 1115?1120 (1978).
[164] R. W. Brockett, ?The global description of locally linear systems,? Lect. Notes Contr. and Inf. Sci.,39, 1?8 (1982). · Zbl 0493.93011 · doi:10.1007/BFb0006815
[165] R. W. Brockett, ?Control theory and singular Riemannian geometry,? New Dir. Appl. Math., New York, 11?27 (1982).
[166] R. W. Brockett, ?Asymptotic stability and feedback stabilization,? Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ. June 28?July 2, 1982, Boston, 181?191 (1983).
[167] R. W. Brockett and Paul A. Fuhrmann, ?Normal symmetric dynamical systems,? SIAM J. Contr. and Optim.,14, No. 1, 107?119 (1976). · Zbl 0323.93002 · doi:10.1137/0314009
[168] R. W. Brockett and H. J. Sussmann, ?Tangent bundles of homogeneous spaces are homogeneous spaces,? Proc. Amer. Math. Soc.,35, No. 2, 550?551 (1972). · Zbl 0256.53039 · doi:10.1090/S0002-9939-1972-0310808-1
[169] Pavol Brunovský, ?Local controllability of odd systems,? Banach Center Publ., Vol. 1, Proc. Conf. Zakapone, 1974, Warszawa PWN, 39?45 (1976).
[170] Pavol Brunovsky, ?Integrability of families of vector fields and controllability,? Simp, geometrie si analizä globala, GH, Titeica si d. Pompeiu, Bucuresti, 1973, Acad. RSR, 269?270 (1976).
[171] Pavol Brunovsky, ?Existence of regular synthesis for general control problems,? J. Differ. Equat.,38, No. 3, 317?434 (1980). · Zbl 0417.49030 · doi:10.1016/0022-0396(80)90011-X
[172] Pavol Brunovsky, ?On the structure of optimal feedback system,? Proc. Int. Congr. Math. Helsinki, 15?23 Aug. 1978, Vol. 2, 841?846, Helsinki (1980). · Zbl 0369.49013
[173] Pavol Brunovsky and Claude Lobry, ?Contrôlabilité bang-bang, contrôlabilité différentiable, et perturbation des systèmes non-linéaires,? Ann. mat. pura ed appl.,105, 93?119 (1975). · Zbl 0316.93007 · doi:10.1007/BF02414925
[174] C. I. Byrnes, ?Toward a global theory of (f,g)-invariant distributions with singularities,? Lect. Notes Contr. and Inf. Sci.,58, 149?165 (1984). · Zbl 0543.93011 · doi:10.1007/BFb0031050
[175] C. I. Byrnes, ?Control theory, inverse spectral problems, and real algebraic geometry,? Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ., June 28?July 2, 1982, Boston, 192?208 (1983).
[176] C. I. Byrnes and B. D. C. Anderson, ?Output feedback and generic stabilizability,? SIAM J. Contr. and Optim.,22, No. 3, 362?380 (1984). · Zbl 0557.93047 · doi:10.1137/0322024
[177] C. I. Byrnes and A. J. Krener, ?On the existence of globally (f, g)-invariant distributions,? Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ., June 28?July 2, 1982, Boston, 209?225 (1983).
[178] J. L. Casti, ?Recent developments and future perspectives in nonlinear system theory,? SIAM Review,24, No. 2, 301?331 (1982). · Zbl 0486.93031 · doi:10.1137/1024065
[179] W. L. Chow, ?Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung,? Math. Ann.,117, 98?105 (1939). · JFM 65.0398.01
[180] D. Claude, ?Découplage des systèmes nonlinéaires analytiques ou rejet des perturbations,? C. r. Acad. sci., sér. 1,292, No. 1, 59?62 (1981).
[181] D. Claude, ?Decoupling of nonlinear systems,? Syst. and Contr. Lett.,2, No. 5, 242?248 (1982). · Zbl 0473.93043 · doi:10.1016/S0167-6911(82)80005-4
[182] D. Claude and E. Bernard-Weil, ?Découplage et immersion d’un modèle neuroendocrinien,? C. r. Acad. sci., sér. 1,299, No. 5, 129?132 (1984).
[183] D. Claude, M. Fliess, and A. Isidori, ?Immersion, directe et par bouclage, d’un système non-linéaire dans un linéaire,? C. r. Acad. sci., sér. 1,296, No. 4, 237?240 (1983).
[184] C. Commault and J. M. Dion, ?Les sous-espaces (A, B)-invariantes et les sous-éspaces de commandabilité,? Outils et modèles math, autom. Anal. syst. et trait, signal.. Vol. 1, Paris, 19?37 (1981). · Zbl 0479.93017
[185] R. Conti, ?Sul principio dell bang-bang per i processi di controllo bilineari,? Matematiche,30, No. 2, 363?371 (1975). · Zbl 0346.49008
[186] R. Conti, ?On global controllability,? Int. Conf. Diff. Equat., 1974, New York, 203?228 (1975). · doi:10.1016/B978-0-12-059650-8.50019-3
[187] R. Conti, ?On relay controllability for a bilinear process,? Differential equations, 32?36, Stockholm (1977). · Zbl 0387.34044
[188] P. E. Crouch, ?Realization theory for dynamical systems,? Proc. Inst. Elec. Eng.,126, No. 6, 605?615 (1979). · doi:10.1049/piee.1979.0141
[189] P. E. Crouch, ?Dynamical realizations of finite Volterra series,? Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Process, Albuquerque, N. M., 1980, Vol. 2, New York, 1122?1127 (1980). · Zbl 0477.93016
[190] P. E. Crouch, ?Dynamical realization of finite Volterra series,? SIAM J. Contr. and Optim.,18, No. 4, 621?623 (1980). · Zbl 0448.90056 · doi:10.1137/0318046
[191] P. E. Crouch, ?Polynomic systems theory. A review,? Proc. Inst. Elec. Eng.,127, No. 5, 220?228 (1980).
[192] P. E. Crouch, ?Solvable approximations to control systems,? SIAM J. Contr. and Optim.,22, No. 1, 40?54 (1984). · Zbl 0537.93040 · doi:10.1137/0322004
[193] P. E. Crouch, ?Spacecraft attitude control and stabilization: application of geometric control to rigid body model,? IEEE Trans. Autom. Contr.,29, No. 4, 321?331 (1984). · Zbl 0536.93029 · doi:10.1109/TAC.1984.1103519
[194] P. E. Crouch and M. Irving, ?On finite Volterra series which admit Hamiltonian realization,? Math. Syst. Theory,17, No. 4, 293?318 (1984). · Zbl 0634.70004 · doi:10.1007/BF01744446
[195] P. D’Alessandro, A. Isidori, and A. Ruberti, ?Realization and structure theory of bilinear systems,? SIAM J. Contr.,12, No. 3, 517?535 (1974). · Zbl 0254.93008 · doi:10.1137/0312040
[196] I. Derese and E. J. Noldus, ?Nonlinear control of bilinear systems,? IEEE Proc.D127, No. 4, 169?175 (1980). · doi:10.1049/ip-d.1980.0026
[197] D. L. Elliott, ?A consequence of controllability,? J. Differ. Equat.,10, No. 2, 364?370 (1971). · Zbl 0206.16601 · doi:10.1016/0022-0396(71)90059-3
[198] E. P. Espinosa, A. Plis, and R. Suares, ?About nonlinear system in R \(\times\) R2 with one dimensional control,? Bol. Soc. mat. mex.,24, No. 2, 83?90 (1979).
[199] M. E. Evans, ?Bilinear systems with homogeneous input-output maps,? IEEE Trans. Automat. Contr.28, No. 1, 113?115 (1983). · Zbl 0509.93018 · doi:10.1109/TAC.1983.1103126
[200] M. Fliess, ?Sur la réalisation des systèmes dynamiques bilinéaires,? C. r. Acad. sci., sér. A,277, No. 18, 923?926 (1973).
[201] M. Fliess, ?Sur les systèmes dynamiques bilinéaires qui sont linéaires,? C. r. Acad. sci., sér. A,278, No. 17, 1147?1149 (1974).
[202] M. Fliess, ?Séries de Volterra et séries formelles non commutatives,? C. r. Acad. sei., sér. A,280, No. 14, 965?967 (1975).
[203] M. Fliess, ?Matrices de Hankel,? J. math, pures et appl.,53, No. 2, 197?222 (1974).
[204] M. Fliess, ?Realization of nonlinear systems and abstract transitive Lie algebras,? Bull. Amer. Math. Soc.,2, 444?446 (1980). · Zbl 0427.93011 · doi:10.1090/S0273-0979-1980-14760-6
[205] M. Fliess, ?Analytic nonlinear realizations via E. Cartan’s third fundamental theorem,? Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Process., Albuquerque, N. M., 1980, Vol. 2, New York, 922?925 (1980).
[206] M. Fliess, ?The unobservability ideal for nonlinear systems,? IEEE Trans. Autom. Contr.,26, No. 2, p. 592 (1981). · Zbl 0487.93011 · doi:10.1109/TAC.1981.1102659
[207] M. Fliess, ?Développements fonctionels et calcul symbolique non-commutatif,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 359?377 (1981).
[208] M. Fliess, ?An algebraic approach to functional expansions, application to a singular optimal control problem,? Contr. Sci. and Technol. Progr. Proc. 8th Trienni. World Congr. Int. Fed. Autom. Contr. Kyoto, 24?28 Aug. 1981, Vol. 1, Oxford, 331?336 (1982).
[209] M. Fliess, ?A remark on nonlinear observability,? IEEE Trans. Automat. Contr.,27, No. 5, 489?490 (1982). · Zbl 0479.93016 · doi:10.1109/TAC.1982.1102935
[210] M. Fliess, ?Finite-dimensional observation spaces for nonlinear systems,? Lect. Notes Contr. and Inf. Sci.,39, 73?77 (1982). · Zbl 0495.93031 · doi:10.1007/BFb0006820
[211] M. Fliess, ?Local realization of linear and nonlinear time-varying systems,? Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8?10, 1982, Vol. 2, New York, 733?738 (1982). · doi:10.1109/CDC.1982.268237
[212] M. Fliess, ?On the concept of derivatives and Taylor expansions for nonlinear input-output systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec., 1983, Vol. 2, New York, 643?646 (1983).
[213] M. Fliess, ?Réalisation des systèmes non-linéaires, algèbres de Lie filtrées transitives et séries génératrices non-commutatives,? Invent, math.,71, 521?537 (1983). · Zbl 0513.93014 · doi:10.1007/BF02095991
[214] M. Fliess, ?On thé inversion of nonlinear multivariable systems,? Lect. Notes Contr. and Inf. Sci.,58, 323?330 (1984). · Zbl 0538.93028 · doi:10.1007/BFb0031063
[215] M. Fliess, ?Quelques remarques élémentaires sur le calcul des lois de bouclage en commande optimale non-linéaire,? Lect. Notes Contr. and Inf. Sci.,63, 409?512 (1984). · Zbl 0557.93035
[216] M. Fliess, ?La commande optimale en boucle fermée comme problème de Cauchy,? C. r. Acad. sci., sér. 1,299, No. 16, 807?809 (1984).
[217] M. Fliess and Ivan Kupka, ?A finiteness criterion for nonlinear input-output systems,? SIAM J. Contr. and Optim.,21, No. 5, 721?728 (1983). · Zbl 0529.93031 · doi:10.1137/0321044
[218] M. Fliess and F. Lamnabi-Lagarrique, ?Séries de Volterra et formalisme hamiltonien,? C. r. Acad. sci., sér. 1,299, No. 15, 783?785 (1984).
[219] M. Fliess and D. Normand-Cyrot, ?Vers une approche algébrique des systèmes non-linéaires en temps discret,? Lect. Notes Contr. and Inf. Sci.,28, 594?603 (1980). · doi:10.1007/BFb0004069
[220] M. Fliess and D. Normand-Cyrot, ?La propriété d’approximation des systèmes réguliers (ou bilinéaires),? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 379?384 (1981).
[221] M. Fliess and D. Normand-Cyrot, ?A group-theoretic approach to discrete-time controllability,? Proc. 20th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., Dec. 16, 1981, Vol. 1?3, New York, 551?557 (1981). · Zbl 0498.93010
[222] M. Fliess and C. Reutenauer, ?Une application de l’algèbre différentielle aux systèmes réguliers (ou bilinéaires),? Lect. Notes Contr. and Inf. Sci.,44, 99?107 (1982). · Zbl 0558.93017 · doi:10.1007/BFb0044385
[223] M. Fliess and C. Reutenauer, ?Picard-Vessiot theory of bilinear systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 3, New York, 1153?1157 (1983).
[224] M. Fliess and C. Reutenauer, ?Théorie de Picard-Vessiot des systèmes réguliers (ou bilinéaires),? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, Paris, 557?581 (1983).
[225] A. E. Frazho, ?A shift operator approach to bilinear system theory,? SIAM J. Contr. and Optim.,18, No. 6, 640?658 (1980). · Zbl 0517.93013 · doi:10.1137/0318049
[226] E. Freund, ?The structure of decoupled nonlinear systems,? Int. J. Contr.,21, No. 3, 443?450 (1975). · Zbl 0306.93008 · doi:10.1080/00207177508922001
[227] R. E. Gaines and J. K. Peterson, ?Degree theoretic methods in optimal control,? J. Math. Anal, and Appl.,94, No. 1, 44?77 (1983). · Zbl 0525.49001 · doi:10.1016/0022-247X(83)90005-7
[228] J.-P. Gauthier, ?Structure des systèmes non-linéaires,? CNRS, Paris (1984).
[229] J.-P. Gauthier and G. Bernard, ?Observability for anyu(t) of a class of nonlinear systems,? Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, Albuquerque, N. M., 1980, Vol. 2, New York, 910?915 (1980).
[230] J.-P. Gauthier and G. Bornard, ?Observability for any u(t) of a class of nonlinear systems,? IEEE Trans. Automat. Contr.,26, No. 4, Part 1, 922?926 (1981). · Zbl 0553.93014 · doi:10.1109/TAC.1981.1102743
[231] J.-P. Gauthier and G. Bornard, ?Stabilisation des systèmes non-linéaires,? Outils et modèles math. autom. Anal. syst. et trait, signal, Vol. 1, Paris, 307?324 (1981).
[232] J.-P. Gauthier and G. Bornard, ?Existence and uniqueness of minimal realization inC ?-case,? Syst. and Contr. Lett.,2, No. 6, 342?350 (1982).
[233] J.-P. Gauthier and G. Bornard, ?An openness condition for the controllability of nonlinear systems,? SIAM J. Contr. and Optim.,20, No. 6, 808?814 (1982). · Zbl 0509.93015 · doi:10.1137/0320058
[234] J.-P. Gauthier and G. Bornard, ?Uniqueness of weakly minimal analytic realizations,? IEEE Trans. Automat. Contr.,28, No. 1, 111?113 (1983). · Zbl 0509.57024 · doi:10.1109/TAC.1983.1103124
[235] J.-P. Gauthier and G. Bornard, ?Existence and uniqueness of minimal realizations for a class ofC ?-systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 3, New York, 1158?1161 (1983).
[236] J.-P. Gauthier and G. Bornard, ?Résultats actuels sur la théorie des déformations des systèmes non-linéaires,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, Paris, 583?598 (1983).
[237] J.-P. Gauthier and G. Bornard, ?Existence and uniqueness of minimal realizations for a class ofC ?-systems,? SIAM J. Contr. and Optim.,22, No. 4, 666?670 (1984). · Zbl 0591.93013 · doi:10.1137/0322041
[238] J.-P. Gauthier and G. Bornard, ?Existence et unicité des réalisations analytiques minimales globales des systèmes non-linéaires,? C. r. Acad. sci., sér. 1,299, No. 12, 579?581 (1984).
[239] Y. Gerbier and C. Lobry, ?On the structural stability of dynamical control systems,? Proc. IFAC 8th World congr., Boston-Cambridge, Mass., 1975, Part 1, Pittsburgh, Pa., 36311?56319 (1975).
[240] F. Geromel, J. Levine, and P. Willis, ?A fast algorithm for systems decoupling using formal calculus,? Lect. Notes Contr. and Inf. Sci.,63, 378?390 (1984). · Zbl 0557.93022 · doi:10.1007/BFb0006299
[241] G. Gezareo and R. Marino, ?On the application of symbolic computation to nonlinear control theory,? Lect. Notes Comput. Sci.,174, 35?46 (1984). · doi:10.1007/BFb0032828
[242] S. T. Glad, ?Observability and nonlinear deadbeat observers,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec., 1983, Vol. 2, New York, 800?802 (1983).
[243] K. A. Grasse, ?Perturbations of nonlinear controllable systems,? SIAM J. Contr. and Optim.,19, No. 2, 203?220 (1981). · Zbl 0457.93014 · doi:10.1137/0319015
[244] K. A. Grasse, ?Nonlinear perturbations of control-semilinear control systems,? SIAM J. Contr. and Optim.,20, No. 3, 311?327 (1982). · Zbl 0485.49025 · doi:10.1137/0320024
[245] K. A. Grasse, ?Some topologkal covering theorems with applications to control theory,? J. Math. Anal, and Appl,91, No. 2, 305?318 (1983). · Zbl 0529.93010 · doi:10.1016/0022-247X(83)90153-1
[246] K. A. Grasse, ?On accessibility and normal accessibility: the openness of controllability in the fineC 0-topology,? J. Differ. Equat.,53, No. 3, 387?441 (1984). · Zbl 0553.93012 · doi:10.1016/0022-0396(84)90032-9
[247] O. M. Grasselli and A. Isidori, ?Deterministic state reconstruction and reachability of bilinear control processes,? Proc. Joint Automat. Contr. Conf., San Francisco, 1977, Vol. 1, New York, 1423?1427 (1977).
[248] J. W. Grizzle and S. I. Marcus, ?Symmetries in nonlinear control systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 3, New York, 1384?1388 (1983).
[249] J. W. Grizzle and S. I. Marcus, ?Optimization of systems possessing symmetries,? Lect. Notes Contr. and Inf. Sci.,63, 513?524 (1984). · doi:10.1007/BFb0006308
[250] Jan M. Gronski, ?Perturbations of open sets of attainability,? Math. Syst. Theory,10, No. 3, 285?287 (1976?1977). · Zbl 0354.49021 · doi:10.1007/BF01683279
[251] Jan M. Gronski, ?Classification of closed sets of attainability in the plane,? Pacif. J. Math.,77, No. 1, 117?129 (1978). · Zbl 0353.49035 · doi:10.2140/pjm.1978.77.117
[252] Jan M. Gronski, ?A criterion for classifying certain planar systems,? Ann. mat. pura ed appl.,124, 1?12 (1980). · Zbl 0478.49034 · doi:10.1007/BF01795384
[253] J. Hammer, ?Non-linear systems: stability and rationality,? Int. J. contr.,40, No. 1, 1?35 (1984). · Zbl 0567.93038 · doi:10.1080/00207178408933254
[254] G. W. Haynes and H. Hermes, ?Nonlinear controllability via Lie theory,? SIAM J. Contr.,8, No. 4, 450?460 (1970). · Zbl 0229.93012 · doi:10.1137/0308033
[255] M. Hazewinkel, ?Control and filtering of a class of nonlinear but homogeneous systems,? Lect. Notes Contr. and Inf. Sci.,39, 123?126 (1982). · doi:10.1007/BFb0006824
[256] M. Hazewinkel, ?Lectures on invariants, representations and algebras in systems and control theory,? Lect. Notes Math.,1029, 1?36 (1984). · doi:10.1007/BFb0098925
[257] J. S. Hepburn and W. M. Wonham, ?Error feedback and internal models on differentiable manifolds,? Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8?10, 1982, Vol. 2, New York, 717?722 (1982). · Zbl 0524.93032 · doi:10.1109/CDC.1982.268234
[258] J. S. Hepburn and W. M. Wonham, ?Structurally stable nonlinear regulation with step inputs,? Math. Syst. Theory,17, No. 4, 319?333 (1984). · Zbl 0627.93015 · doi:10.1007/BF01744447
[259] R. Hermann, ?On the accessibility problem in control theory,? Internat. Sympos. Nonlinear Different. Equations and Nonlinear Mech., Colorado Springs, 1961, Acad. Press, New York-London, 325?332 (1963).
[260] R. Hermann, ?Some remarks on geometry of systems,? Geometr. Meth. Syst. Theory, Dordrecht-Boston, 237?242 (1973).
[261] R. Hermann, ?The theory of equivalence of Pfaffian systems and input systems under feedback,? Math. Syst. Theory,15, No. 4, 343?356 (1982). · Zbl 0544.93029 · doi:10.1007/BF01786990
[262] R. Hermann, ?Pfaffian systems and feedback linearization/obstructions,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 1, New York, 119?121 (1983).
[263] R. Hermannand A. J. Krener, ?Nonlinear controllability and observability,? IEEE Trans. Autom. Contr.,22, No. 5, 728?740 (1977). · Zbl 0396.93015 · doi:10.1109/TAC.1977.1101601
[264] R. Hermann and C. F. Martin, ?Applications of algebraic geometry to systems theory. Part 1,? IEEE Trans. Automat. Contr.,22, No. 1, 19?25 (1977). · Zbl 0355.93013 · doi:10.1109/TAC.1977.1101395
[265] H. Hermes, ?On local and global controllability,? SIAM J. Contr.,12, No. 2, 252?261 (1974). · Zbl 0255.93005 · doi:10.1137/0312019
[266] H. Hermes, ?Necessary and sufficient conditions for local controllability and time optimality,? Proc. Int. Congr. Math., Vancouver, 1974, Vol. 2, s. 1, 343?347 (1975). · Zbl 0377.49026
[267] H. Hermes, ?On local controllability,? Banach Center. Publ., Vol. 1, Proc. Conf. Zakopane 1974, Warszawa, PWN, 103?106 (1976).
[268] H. Hermes, ?Local controllability and sufficient conditions in singular problems. I,? J. Differ. Equat.,20, No. 1, 213?232 (1976). · Zbl 0282.93010 · doi:10.1016/0022-0396(76)90103-0
[269] H. Hermes, ?Local controllability and sufficient conditions in singular problems. II,? SIAM J. Contr. and Optim.,14, No. 6, 1049?1062 (1976). · Zbl 0351.93009 · doi:10.1137/0314065
[270] H. Hermes, ?High order conditions for local controllability and controlled stability,? Proc. IEEE Conf. Decis. and Contr. incl. 15th Symp. Adapt. Process., Clearwater, Fla., 1976, New York, 836?840 (1976). · Zbl 0355.93009
[271] H. Hermes, ?High order algebraic conditions for controllability,? Lect. Notes Econ. and Math. Syst.,131, 165?171 (1976). · Zbl 0355.93009 · doi:10.1007/978-3-642-48895-5_11
[272] H. Hermes, ?High order controlled stability and controllability,? Dyn. Syst. Proc. Univ. Fla. Int. Symp. Gainesville, 1976, New York, 89?99 (1977).
[273] H. Hermes, ?Controlled stability,? Ann. mat. pura ed appl.,114, 103?119 (1977). · Zbl 0385.93010 · doi:10.1007/BF02413781
[274] H. Hermes, ?Lie algebras of vector fields and local approximation of attainable sets,? SIAM J. Contr. and Optim.,16, No. 5, 715?727 (1978). · Zbl 0388.49025 · doi:10.1137/0316047
[275] H. Hermes, ?The high order local approximation of attainable sets,? Proc. 17th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Process., San Diego, Calif., 1978, New York, 151?152 (1979). · Zbl 0435.93018
[276] H. Hermes, ?Local controllability of observables in finite and infinite dimensional nonlinear control systems,? Appl. Math, and Optim.,5, No. 2, 117?125 (1979). · Zbl 0418.93008 · doi:10.1007/BF01442549
[277] H. Hermes, ?Controllability of nonlinear delay differential equations,? Nonlinear Anal.: Theory, Meth. and Appl.,3, No. 4, 483?493 (1979). · Zbl 0409.49029 · doi:10.1016/0362-546X(79)90063-4
[278] H. Hermes, ?On a stabilizing feedback attitude control,? J. Optimiz. Theory and Appl.,31, No. 3, 373?384 (1980). · Zbl 0417.93060 · doi:10.1007/BF01262979
[279] H. Hermes, ?On the synthesis of a stabilizing feedback control via Lie algebraic methods,? SIAM J. Contr. and Optimiz.18, No. 4, 352?361 (1980). · Zbl 0477.93046 · doi:10.1137/0318027
[280] H. Hermes, ?On local controllability,? Proc. 20th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., Dec. 16, 1981, Vol. 1?3, New York, 548?550 (1981).
[281] H. Hermes, ?A. Lie algebraic decomposition of nonlinear systems,? Proc. 20th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processess, San Diego, Calif., Dec. 16, 1981, Vol. 1?3, New York, 568?569 (1981).
[282] H. Hermes, ?Control systems which generate decomposable Lie algebras,? J. Differ. Equat.,44, No. 2, 166?187 (1982). · Zbl 0496.49021 · doi:10.1016/0022-0396(82)90012-2
[283] H. Hermes, ?On local controllability,? SIAM J. Contr. and Optim.,20, No. 2, 211?220 (1982). · Zbl 0486.49022 · doi:10.1137/0320017
[284] R. M. Hirschorn, ?Global controllability of nonlinear systems,? SIAM J. Contr.,14, No. 4, 700?711 (1976). · Zbl 0341.93006 · doi:10.1137/0314045
[285] R. M. Hirschorn, ?Invertibility of control systems on Lie groups,? SIAM J. Contr. and Optim.15, No. 6, 1034?1049 (1977). · Zbl 0402.93011 · doi:10.1137/0315067
[286] R. M. Hirschorn, ?Invertibility of nonlinear control systems,? SIAM J. Contr. and Optim.17, No. 2, 289?297 (1979). · Zbl 0417.93036 · doi:10.1137/0317022
[287] R. M. Hirschorn, ?Invertibility of multivariable nonlinear control systems,? IEEE Trans. Automat. Contr.,24, No. 6, 855?865 (1979). · Zbl 0427.93020 · doi:10.1109/TAC.1979.1102181
[288] R. M. Hirschorn, ?Inverses for nonlinear control systems,? Astérisque, No. 75?76, 133?139 (1980).
[289] R. M. Hirschorn, ?(A, B)-invariant distributions and disturbance decoupling of nonlinear systems,? SIAM J. Contr. and Optimiz.,19, No. 1, 1?19 (1981). · Zbl 0474.93036 · doi:10.1137/0319001
[290] R. M. Hirschorn, ?Output tracking in multivariable nonlinear systems,? IEEE Trans. Automat. Contr.,26, No. 2, 593?595 (1981). · Zbl 0477.93010 · doi:10.1109/TAC.1981.1102658
[291] Chin S. Hsu, Uday B. Desai, and Christopher A. Grawley, ?Realization algorithms and approximation methods of bilinear systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 2, New York, 783?788 (1983).
[292] Garng M. Huang, T. J. Tarn, and John W. Clark, ?On the controllability of quantum-mechanical systems,? J. Math. Phys.,24, No. 11, 2608?2618 (1983). · Zbl 0539.93003 · doi:10.1063/1.525634
[293] L. R. Hunt, ?Controllability of nonlinear systems,? 12th Asilomar Conf. Circuits, Syst and Comput., Pacific Grove, Calif., 1978, Conv. Rec. New York, 466?467 (1979).
[294] L. R. Hunt, ?Controllability of nonlinear hypersurface systems,? Algebraic and Geom. Meth. Linear Syst. Theory, Pap AMS-NASA-NATO Summer Semin., Harvard Univ., June 1979, Providence, R. I., 209?224 (1980).
[295] L. R. Hunt, ?Controllability of general nonlinear systems,? Math. Syst. Theory,12, No. 4, 361?370 (1979). · Zbl 0394.93010 · doi:10.1007/BF01776583
[296] L. R. Hunt, ?Controllability and stabilizability,? IEEE Int. Symp. Circuits and Syst. Proc., Houston, Tex., Vol. 1, New York, 654?657 (1980).
[297] L. R. Hunt, ?n-dimensional controllability withn ?1 controls,? IEEE Trans. Automat. Contr.27, No. 1, 113?117 (1982). · Zbl 0476.93017 · doi:10.1109/TAC.1982.1102876
[298] L. R. Hunt, ?Global controllability of nonlinear systems in two dimensions,? Math. Syst. Theory,13, No. 4, 361?376 (1980). · Zbl 0446.93016 · doi:10.1007/BF01744306
[299] L. R. Hunt and Renjeng Su, ?Transforming nonlinear systems,? 24th Midwest Symp. Circuits and Syst., Albuquerque, N. M., June 29?30, 1981, North Hollywood, Calif., 341?345 (1981). · Zbl 0511.93036
[300] L. R. Hunt and Renjeng Su, ?Control of nonlinear nonstationary systems,? Proc. 20th IEEE Conf. Decis. and Contr. inch Symp. Adapt. Processes, San Diego, Calif., Dec. 1981, Vol. 1?3, New York, 558?563 (1981). · Zbl 0511.93036
[301] L. R. Hunt and Renjeng Su, ?Linear approximation of nonlinear systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 1, New York, 122?125 (1983). · Zbl 0502.93036
[302] L. R. Hunt and Renjeng Su, ?Observability for two-dimensional systems,? Math. Syst. Theory,17, No. 2, 159?166 (1984). · Zbl 0538.93006 · doi:10.1007/BF01744438
[303] L. R. Hunt, Renjeng Su, and G. Meyer, ?Global transformations of nonlinear systems,? IEEE Trans. Autom. Contr.,28, No. 1, 24?31 (1983). · Zbl 0502.93036 · doi:10.1109/TAC.1983.1103137
[304] L. R. Hunt, Renjeng Su, and G. Meyer, ?Design for multi-input nonlinear systems,? Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ., June 28?July 2, 1982, Boston, 268?298 (1983). · Zbl 0543.93026
[305] N. Imbert, M. Clique, and A.-J. Fossard, ?Un critère de gouvernabilité des systèmes bilinéaires,? RAIRO,3, 55?64 (1979). · Zbl 0333.93010
[306] Yujiro Inouye, ?On the observability of autonomous nonlinear systems,? J. Math. Anal, and Appl.,60, No. 1, 236?247 (1977). · Zbl 0357.93007 · doi:10.1016/0022-247X(77)90062-2
[307] A. Isidori, ?Direct construction of minimal bilinear realization from nonlinear input-output maps,? IEEE Trans. Automat. Control,18, No. 6, 626?631 (1973). · Zbl 0273.93004 · doi:10.1109/TAC.1973.1100424
[308] A. Isidori, ?Sur la théorie structurelle et le problème de la rejection des perturbations dans les systèmes non-linéaires,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 245?294 (1981).
[309] A. Isidori, ?Observabilité et observateurs des systèmes non-linéaires,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 295?305 (1981).
[310] A. Isidori, ?The geometric approach to nonlinear feedback control. A survey,? Lect. Notes Contr. and Inf. Sci.,44, 517?531 (1982).
[311] A. Isidori, ?Formal infinite zeros of nonlinear systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 2, New York, 647?652 (1983).
[312] A. Isidori, ?Sous-espaces de commandabilité dans les systèmes non-linéaires,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, Paris, 599?608 (1983).
[313] A. Isidori, ?Nonlinear feedback, structure at infinity and the input-output linearization problem,? Lect. Notes Contr. and Inf. Sci.,58, 473?493 (1984). · Zbl 0538.93029 · doi:10.1007/BFb0031076
[314] A. Isidori and A. J. Krener, ?On feedback equivalence of nonlinear systems,? Syst. and Contr. Lett.,3, No. 2, 118?121 (1982). · Zbl 0537.93038 · doi:10.1016/S0167-6911(82)80021-2
[315] A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, ?Nonlinear decoupling via feedback: A differential geometric approach,? IEEE Trans. Automat. Contr.,26, No. 2, 331?345 (1981). · Zbl 0481.93037 · doi:10.1109/TAC.1981.1102604
[316] A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, ?The observability of cascade connected nonlinear systems,? Contr. Sci. and Technol. Progr. Soc., Proc. 8th Trienni. World Congr. Int. Fed. Autom. Contr., Kyoto, 24?28 Aug. 1981, Vol. 1, Oxford, 337?341 (1982). · Zbl 0522.93017
[317] A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, ?Locally (f,g)-invariant distributions,? Syst. and Contr. Lett.,2, No. 1, 12?15 (1981). · Zbl 0483.93051 · doi:10.1016/S0167-6911(81)80005-9
[318] A. Isidori and A. Ruberti, ?Realization theory of bilinear systems,? Geom. Meth. Syst. Theory, Dordrecht-Boston, 83?130 (1973). · Zbl 0276.93012
[319] A. Isidori and A. Ruberti, ?Time varying bilinear systems,? Lect. Notes Econ. and Math. Syst.,111, 44?53 (1975). · Zbl 0345.93020 · doi:10.1007/978-3-642-47457-6_2
[320] A. Isidori and A. Ruberti, ?State-space representation and realization of time-varying linear input-output functions,? J. Franklin Inst.,301, No. 6, 573?592 (1976). · Zbl 0334.93014 · doi:10.1016/0016-0032(76)90079-X
[321] G. Jacob, ?Réalisation des systèmes réguliers (ou bilinéaires) et séries génératrices non-commutatives,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 325?357 (1981).
[322] B. Jacubczyk, ?Existence and uniqueness of realizations of nonlinear systems,? SIAM J. Contr. and Optim.,18, No. 4, 455?471 (1980). · Zbl 0447.93012 · doi:10.1137/0318034
[323] B. Jacubczyk, ?Existence and uniqueness of nonlinear realizations,? Astérisque, No. 75?76, 141?147 (1980).
[324] B. Jacubczyk, ?Construction of formal and analytic realizations of nonlinear systems,? Lect. Notes contr. and Inf. Sci.,39, 147?156 (1982). · doi:10.1007/BFb0006825
[325] B. Jacubczyk and B. Ka?kosz, ?Realizations of Volterra series,? Lect. Notes Contr. and Inf. Sci.,22, 302?310 (1980). · doi:10.1007/BFb0036406
[326] B. Jacubczyk and B. Kaskosz, ?Readability of Volterra series with constant kernels,? Nonlinear Anal.: Theory Meth. and Appl.,5, No. 2, 167?183 (1981). · Zbl 0457.93017 · doi:10.1016/0362-546X(81)90042-0
[327] B. Jacubczyk and D. Normand-Cyrot, ?Orbites de pseudogroupes de difféomorphismes et commandabilité des systèmes nonlinéaires en temps discret,? C. r. Acad. sci., sér. 1,298, No. 11, 257?260 (1984).
[328] B. Jacubczyk and W. Respondek, ?On linearization of control systems,? Bull. Acad. pol. Sci., Sér. sci. math.,28, No. 9?10, 517?522 (1980).
[329] V. Jurdjevi?, ?Abstract control systems. Controllability and observability,? SIAM J. Contr.,8, No. 3, 424?439 (1970). · Zbl 0262.93006 · doi:10.1137/0308030
[330] V. Jurdjevi?, ?Certain controllability properties of analytic control systems,? SIAM J. Contr.,10, No. 2, 354?360 (1972). · Zbl 0238.93008 · doi:10.1137/0310027
[331] V. Jurdjevi?, ?Causal dynamical systems: irreducible realizations,? Geometr. Meth. Syst. Theory, Dordrecht-Boston, 253?262 (1973).
[332] V. Jurdjevic, ?On the structure of irreducible state representation of a causal system,? Math. Syst. Theory,8, No. 1, 77?89 (1974). · Zbl 0335.93002 · doi:10.1007/BF01761709
[333] V. Jurdjevi?, ?Attainable sets and controllability: a geometric approach,? Lect. Notes Econ. and Math. Syst.,106, 219?251 (1974). · doi:10.1007/978-3-642-48290-8_10
[334] V. Jurdjevi?, ?Polynomial control systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16, Dec. 1983, Vol. 2, New York, 904?906 (1983).
[335] V. Jurdjevic and I. Kupka, ?Control systems on semi-simple Lie groups and their homogeneous spaces,? Ann. Inst. Fourier,31, No. 4, 151?179 (1981). · Zbl 0453.93011 · doi:10.5802/aif.853
[336] V. Jurdjevi? and I. Kupka, ?Control systems subordinated to a group action: Accessibility.? J. Differ. Equat.,39, No. 2, 186?211 (1981). · Zbl 0531.93008 · doi:10.1016/0022-0396(81)90072-3
[337] V. Jurdjevi? and J. Quin, ?Controllability and stabilizability,? J. Differ. Equat.,28, No. 3, 381?389 (1978). · Zbl 0417.93012 · doi:10.1016/0022-0396(78)90135-3
[338] V. Jurdjevi? and G. Sallet, ?Controllability of affine systems,? Differ. Geom. Contr. Theory, Proc. Conf. Mich., Technol. Univ., June 28?July 2, 1982, Boston, 299?309 (1983).
[339] V. Jurdjevi? and G. Sallet, ?Controllability properties of affine systems,? SIAM J. Contr. and Optim.,22, No. 3, 501?508 (1984). · Zbl 0549.93010 · doi:10.1137/0322030
[340] V. Jurdjevi? and H. J. Sussmann, ?Control systems on Lie groups,? J. Differ. Equat.,12, No. 2, 313?329 (1972). · Zbl 0237.93027 · doi:10.1016/0022-0396(72)90035-6
[341] B. Kalitine and C. Lobry, ?Complète contrôlabilité de certains systèmes non-linéaires,? Rev. roum. pures et appl.,24, No. 2, 255?271 (1979).
[342] N. Kalouptsidis, ?Prolongations and Lyapunov functions in control systems,? Math. Syst. Theory,16, No. 3, 233?249 (1983). · Zbl 0543.93056 · doi:10.1007/BF01744578
[343] N. Kalouptsidis and D. L. Elliott, ?Stability analysis of the orbits of control systems,? Math. Syst. Theory,15, No. 4, 323?342 (1982). · Zbl 0464.93036 · doi:10.1007/BF01786989
[344] N. Kalouptsidis and J. Tsinias, ?Stability improvement of nonlinear systems by feedback,? IEEE Trans. Autom. Contr.,29, No. 4, 364?367 (1984). · Zbl 0554.93057 · doi:10.1109/TAC.1984.1103518
[345] I. Kluvánek and G. Knowless, ?The bang-bang principle,? Lect. Notes Math.,680, 138?151 (1978). · doi:10.1007/BFb0065315
[346] H. W. Knobloch, ?Local controllability in nonlinear systems,? Dyn. Syst. Proc. Univ. Fla. Int. Symp. Gainesville 1976, New York, 157?174 (1977).
[347] H. W. Knobloch, ?Higher order necessary conditions in optimal control theory,? Lect. Notes Math.,827, 151?164 (1980). · Zbl 0444.49013 · doi:10.1007/BFb0091379
[348] H. W. Knobloch, ?Higher order necessary conditions in optimal control theory,? Lect. Notes Contr. and Inf. Sci.,34 (1981). · Zbl 0474.49001
[349] A. Kóza, ?On global optimization of control processes, system-theoretical aspects,? Z. angew. Math, und Mech.,63, No. 5, T412-T413 (1983).
[350] A. J. Krener, ?A generalization of the accessibility problem for control systems,? IEEE Conf. Decis. and Contr. incl. 10th Symp. Adapt. Processes, Miami Beach, Fla. 1971, New York, 186?187 (1971).
[351] A. J. Krener, ?On the equivalence of control systems and the linearization of nonlinear systems,? SIAM J. Contr.11, No. 4, 670?676 (1973). · Zbl 0243.93009 · doi:10.1137/0311051
[352] A. J. Krener, ?The high order maximum principle,? Geom. Meth. Syst. Theory, Dordrecht-Boston, 174?184 (1973). · Zbl 0274.49006
[353] A. J. Krener, ?A generalization of Chow’s theorem and bang-bang theorem to nonlinear control problems,? SIAM J. Contr.12, No. 1, 43?52 (1974). · Zbl 0243.93008 · doi:10.1137/0312005
[354] A. J. Krener, ?Local approximations of control systems,? J. Differ. Equat.,19, No. 1, 125?133 (1975). · Zbl 0276.93020 · doi:10.1016/0022-0396(75)90023-6
[355] A. J. Krener, ?Linearization and bilinearization of control systems,? Proc. Allerton Conf. Circuits and Syst. Theory 1974, Montello, 834?843 (1974).
[356] A. J. Krener, ?Bilinear and nonlinear realizations of input-output maps,? SIAM J. Contr.13, No. 4, 827?834 (1975). · Zbl 0306.93010 · doi:10.1137/0313049
[357] A. J. Krener, ?Structural stability of control systems,? Notices Amer. Math. Soc.,22, p. 407 (1975).
[358] A. J. Krener, ?Local approximation of control systems,? J. Differ. Equat.,19, No. 1, 125?133 (1975). · Zbl 0276.93020 · doi:10.1016/0022-0396(75)90023-6
[359] A. J. Krener, ?The high order maximum principle and its application to singular extremals,? SIAM J. Contr. and Optim.,15, No. 2, 256?293 (1977). · Zbl 0354.49008 · doi:10.1137/0315019
[360] A. J. Krener, ?A decomposition theory for differentiable systems,? SIAM J. Contr. and Optim.15, No. 5, 813?829 (1977). · Zbl 0361.93023 · doi:10.1137/0315052
[361] A. J. Krener, ?A note on commutative bilinear optimal control,? IEEE Trans. Autom. Contr.23, No. 6, p. 111 (1978). · Zbl 0388.49005 · doi:10.1109/TAC.1978.1101921
[362] A. J. Krener, ?(f, g)-invariant distributions, connections, and Pontryagin classes,? Proc. 20th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., Dec. 16, 1981, Vol. 1?3, New York, 1322?1325 (1981).
[363] A. J. Krener and A. Isidori, ?Nonlinear zero distributions,? Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, Albuquerque, N. M., 1980, Vol. 1, New York, 665?668 (1981).
[364] A. J. Krener, A. Isidori, and W. Respondek, ?Partial and robust linearization by feedback,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16, Dec. 1983, Vol. 1, New York, 126?130 (1983).
[365] P. S. Krishnaprasad, ?Deformation of Lie algebras and the Wei-Norman equations,? Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, Albuquerque, N. M., 1980, Vol. 1, New York, 661?662 (1981).
[366] P. S. Krishnaprasad and J. Han, ?Symmetries and reduced linearization: Part II,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 3, New York, 1162?1164 (1983).
[367] J. Ku?era, ?Solution in large of control problemx=(A(1 ?u)+uB)x,? Czechosl. Math. J.,16, No. 4, 600?623 (1966).
[368] J. Ku?era, ?Solution in large of control problem x=(Au+Bv)x,? Czechosl. Math. J.,17, No. 1, 91?96 (1967). · doi:10.1007/BF01692051
[369] J. Ku?era, ?On the accesssibility of bilinear systems,? Czechosl. Math. J.,20, No. 1, 160?168 (1970).
[370] H. Kunita, ?On the controllability of nonlinear systems with applications to polynomial systems,? Appl. Math, and Optim.,5, No. 2, 89?99 (1979). · Zbl 0406.93011 · doi:10.1007/BF01442547
[371] I. Kupka, ?Some problems in accessibility theory,? Astérisque, No. 75?76, 167?176 (1980).
[372] I. Kupka and G. Sallet, ?A sufficient condition for the transitivity of pseudo-semigroups: Application to system theory,? J. Differ. Equat.,47, No. 3, 462?470 (1983). · Zbl 0527.93029 · doi:10.1016/0022-0396(83)90045-1
[373] F. Lamnabhi-Laggarrigue, ?Sur les conditions nécessaires d’optirnalité du deuxième et troisième ordre dans les problèmes de commande optimale singulière,? Lect. Notes Contr. and Inf. Sci.,63, 525?541 (1983). · doi:10.1007/BFb0006309
[374] F. Lamnabhi-Laggarrigue, ?A Volterra series interpretation of some high order conditions in optimal control,? Lect. Notes Contr. and Inf. Sci.,58, 615?627 (1984). · doi:10.1007/BFb0031087
[375] F. Lamnabhi-Laggarrigue, ?contrexemple à une conjecture dans la classe des problèmes de commande optimale singulière,? C. r. Acad. sci., sér. 1,298, No.14, 333?336 (1984).
[376] G. Landholz and M. Sokolov, ?Carathéodory controllability criterion for nonlinear dynamical systems,? Trans. ASME J. Dyn. Syst., Meas. and Contr.,100, No. 3, 209?213 (1978). · Zbl 0395.93011 · doi:10.1115/1.3426369
[377] C. Lesiak and A. J. Krener, ?The existence and uniqueness of Volterra series for nonlinear systems,? IEEE Trans. Automat. Contr.,23, No. 6. 1090?1095 (1978). · Zbl 0393.93009 · doi:10.1109/TAC.1978.1101898
[378] N. Levitt, ?Homotopy and continuous reachability,? Topology,15, No. 1, 55?67 (1975). · Zbl 0335.57013 · doi:10.1016/0040-9383(76)90050-1
[379] N. Levitt, ?Small sets of homeomorphisms which control manifolds,? Proc. Amer. Math. Soc.,57, No. 1, 173?178 (1976). · Zbl 0329.57002 · doi:10.1090/S0002-9939-1976-0405450-1
[380] N. Levitt and H. J. Sussmann, ?On controllability by means of two vector fields,? SIAM J. Contr.13, No. 6, 1271?1281 (1975). · Zbl 0313.93006 · doi:10.1137/0313079
[381] N. Levitt and H. J. Sussmann, ?The generalized pursuit problem where the pursuer uses bang-bang controls,? Differ. Games and Control Theory, II, New York-Basel, 253?264 (1977). · Zbl 0374.90094
[382] James Ting-Ho Lo, ?Global bilinearization of systems with control appearing linearly,? SIAM J. Contr.13, No. 4, 879?885 (1975). · Zbl 0306.93009 · doi:10.1137/0313053
[383] C. Lobry, ?Etude géométrique des problèmes d’optimisation en présence de contraintes,? Thèse Doct. math, pures. Fac. sci. Univ. Grenoble (1967).
[384] C. Lobry, ?Application d’un résultat de Chow à la théorie du contrôle optimal,? C. r. Acad. sci.,270, No. 11, 725?727 (1970).
[385] C. Lobry, ?Contrôlabilité des systèmes non-linéaires,? SIAM J. Contr.,8, No. 4, 573?605 (1970). · Zbl 0207.15201 · doi:10.1137/0308042
[386] C. Lobry, ?Contrôlabilité des systèmes linéaires par des commandes bang-bang,? Rev. Franc. Inf. et Rech. Oper.,4, No. 3, 135?140 (1970).
[387] C. Lobry, ?Une propriété de l’ensemble des états accessibles d’un système guidable,? C. r. Acad. sci.,272, No. 2, 153?156 (1971). · Zbl 0207.15202
[388] C. Lobry, ?Une propriété générique des couples de champs de vecteurs,? Czechosl. Math. J.,22, No. 2, 230?237 (1972).
[389] C. Lobry, ?Quelques propriétés “génériques” des systèmes à commande,? Lect. Notes Math.,280, 120?130 (1972). · Zbl 0246.93017 · doi:10.1007/BFb0066923
[390] C. Lobry, ?Dynamical polysystems and control theory,? Geom. Meth. Syst. Theory,? Dordrecht-Boston, 1?42 (1973).
[391] C. Lobry, ?Controllability of nonlinear systems on compact manifolds.? SIAM J. Contr.12, No. 1, 1?4 (1974). · Zbl 0286.93006 · doi:10.1137/0312001
[392] C. Lobry, ?Deux remarques sur la bang-bang des systèmes semi-linéaires,? Banach. Center. Publ, Vol. 1, Proc. Conf. Zakopane, 1974, Warszawa, PWN, 139?145 (1976).
[393] C. Lobry, ?Controllability of nonlinear control dynamical systems,? Contr. Theory and Top. Funct. Anal., Vol. 1, Vienna, 361?383 (1976). · Zbl 0356.93007
[394] C. Lobry, ?Contrôlabilité des systèmes non-linéaires,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 187?214 (1981).
[395] C. Lobry and G. Sallet, ?Complète contrôlabilité sur les groupes de déplacements,? Multivariable Technol. Syst. Proc. 4th IFAC Int. Symp., Fredericton, 1977, Oxford, 277?283 (1978).
[396] S. Lojasievicz, Jr., ?Some properties of accessible sets in non-linear control systems,? Ann. pol. math.,36, No. 2, 56?61 (1979).
[397] S. I. Marcus, ?Algebraic and geometric methods in nonlinear filtering,? SIAM J. Contr. and Optim.,22, No. 6, 817?844 (1984). · Zbl 0548.93073 · doi:10.1137/0322052
[398] R. Marino, ?Stabilization and feedback equivalence to linear coupled oscillators,? Int. J. Contr.,39, No. 3, 487?496 (1984). · Zbl 0535.93051 · doi:10.1080/00207178408933182
[399] R. Marino and S. Nicosia, ?Linear-model-following control and feedback equivalence to linear controllable systems,? Int. J. Contr.,39, No. 3, 473?485 (1984). · Zbl 0542.93042 · doi:10.1080/00207178408933181
[400] L. Markus, ?Controllability of multi-trajectories on Lie groups,? Lect. Notes Math.,898, 250?256 (1981). · Zbl 0515.34054 · doi:10.1007/BFb0091918
[401] M. Matsuda, ?An integration theorem for completely integrable systems with singularities,? Osaka J. Math.,5, No. 2, 279?283 (1968). · Zbl 0169.24202
[402] G. Meyer, R. Su, and L. R. Hunt, ?Applications of nonlinear transformations to automatic flight control,? Automatica,20, No. 1, 103?107 (1984). · Zbl 0527.93014 · doi:10.1016/0005-1098(84)90069-4
[403] S. Mirica, ?Stratified Hamiltonians and optimal feedback control,? Ann. math, pura ed appl.,133, 51?78 (1983). · Zbl 0523.49020 · doi:10.1007/BF01766011
[404] R. R. Mohler, ?Bilinear control processes,? Acad. Press, New York-London (1973). · Zbl 0343.93001
[405] R. R. Mohler and R. E. Rink, ?Reachable zones for equicontinuous bilinear control processes,? Int. J. Contr.,14, No. 3, 331?339 (1971). · Zbl 0221.93002 · doi:10.1080/00207177108932044
[406] S. Monaco and D. Normand-Cyrot, ?The immersion under feedback of a multi-dimensional discretetime system into a linear system.? Int. J. Contr.,38, No. 1, 245?261 (1983). · Zbl 0566.93012 · doi:10.1080/00207178308933073
[407] S. Monaco and D. Normand-Cyrot, ?Formal power series and input-output linearization of nonlinear discrete-time systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 2, New York, 655?660 (1983). · Zbl 0566.93012
[408] S. Monaco and D. Normand-Cyrot, ?Sur la subordination d’un système non-linéaire discret à un système linéaire,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, Paris, 609?621 (1983).
[409] S. Monaco and D. Normand-Cyrot, ?Sur la commande non-interactive des systèmes non-linéaires en temps discret,? Lect. Notes Contr. and Inf. Sci.63, 364?377 (1984). · Zbl 0546.93037 · doi:10.1007/BFb0006298
[410] T. Mumuro and J. Susiura, ?On controllable pairs of systems on compact Lie groups,? Trans. Soc. Inst, and Contr. Eng.,16, No. 5, 623?627 (1980).
[411] T. Nagano, ?Linear differential systems with singularities and an application to transitive Lie algebras,? J. Math. Soc. Japan,18, No. 4, 398?404 (1966). · Zbl 0147.23502 · doi:10.2969/jmsj/01840398
[412] H. Nijmeijer, ?Controlled invariance for affine control systems,? Int. J. Contr.,34, No. 4, 825?833 (1981). · Zbl 0467.49025 · doi:10.1080/00207178108922563
[413] H. Nijmeijer, ?Observability of a class of nonlinear systems: a geometric approach,? Ric. Automat.,12, No. 1, 50?68 (1981). · Zbl 0523.93018
[414] H. Nijmeijer, ?Invertibility of affine nonlinear control systems: a geometric spproach,? Syst. and Contr. Lett.,2, No. 3, 163?168 (1982). · Zbl 0505.93030 · doi:10.1016/0167-6911(82)90014-7
[415] H. Nijmeijer, ?Feedback decomposition of nonlinear control systems,? IEEE Trans. Autom. Contr.,28, No. 8, 861?862 (1983). · Zbl 0579.93029 · doi:10.1109/TAC.1983.1103330
[416] H. Nijmeijer, ?Noninteracting control for nonlinear systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16, Dec. 1983, Vol. 1, New York, 131?133 (1983).
[417] H. Nijmeijer, ?The triangular decoupling problem for nonlinear control systems,? Nonlinear Anal.: Theory, Meth. and Appl.,8, No. 3, 273?279 (1984). · Zbl 0535.93032 · doi:10.1016/0362-546X(84)90049-X
[418] H. Nijmeijer, ?State-space equivalence of an affine non-linear system with outputs to a minimal linear system,? Int. J. Contr.,39, No. 5, 919?922 (1984). · Zbl 0544.93009 · doi:10.1080/00207178408933220
[419] H. Nijmeijer and A. J. van der Schaft, ?Controlled invariance for nonlinear systems,? IEEE Trans. Automat. Contr.27, No. 4, 904?914 (1982). · Zbl 0492.93035 · doi:10.1109/TAC.1982.1103025
[420] H. Nijmeijer and A. J. qvan der Schaft, ?Controlled invariance for nonlinear systems: two worked examples,? IEEE Trans. Autom. Contr.,29, No. 4, 361?364 (1984). · Zbl 0541.93033 · doi:10.1109/TAC.1984.1103511
[421] H. Nijmeijer and J. M. Schumacher, ?Input-output decoupling of nonlinear sytems with an application to robotics,? Lect. Notes Contr. and Inf. Sci.,63, 391?411 (1984). · Zbl 0578.93030 · doi:10.1007/BFb0006300
[422] H. Nijmeijer and J. M. Schumacher, ?Les systèmes non-linéaires à plus d’entrées que de sorties ne sont pas inversibles,? C. r. Acad. sci., sér. 1,299, No. 15, 791?794 (1984).
[423] D. Normand-Cyrot, ?Une condition de réalisation par systèmes à état-affine discrets,? Lect. Notes Contr. and Inf. Sci.,44, 88?98 (1982). · doi:10.1007/BFb0044384
[424] D. Normand-Cyrot, ?An algebraic approach to the input-output description of nonlinear discrete-time systems,? Proc. Amer. Contr. Conf., Arlington, Va., June 14?16, 1982, New York, 466?471 (1982).
[425] R. Nottrot, ?Optimal processes on manifolds: an application of Stokes’ theorem,? Lect. Notes Math.,963, VI (1982). · Zbl 0515.58033
[426] C. K. Ong, G. M. Huang, T. J. Tarn, and J. W. Clark, ?Invertibility of quantum-mechanical control systems,? Math. Syst. Theory,17, No. 4, 335?350 (1984). · Zbl 0639.93033 · doi:10.1007/BF01744448
[427] J. G. Pearlman, ?Readability of multilinear input-output maps,? Int. J. Contr.,32, No. 2, 271?283 (1980). · Zbl 0446.93022 · doi:10.1080/00207178008922857
[428] Y. Péraire, ?Sur la contrôlabilité des familles de champs de vecteurs uniformément presque-périodiques,? C. r. Acad. sci., sér. 1,295, No. 2, 181?183 (1982).
[429] Y. Péraire, ?Une démonstration brève d’un principe du maximum d’ordre supérieur,? C. r. Acad., sci., sér. 1,299, No. 7, 273?276 (1984).
[430] J. R. Quin, ?Stabilization of bilinear systems by quadratic feedback controls,? J. Math. Anal, and Appl.75, No. 1, 66?80 (1980). · Zbl 0438.93054 · doi:10.1016/0022-247X(80)90306-6
[431] K. V. Rao and R. R. Mohler, ?On the synthesis of Volterra kernels of bilinear systems,? Automat. Contr. Theory and Appl.,3, No. 3, 44?46 (1975).
[432] D. Rebhuhn, ?On the closure of sets of attainability in R2,? J. Optim. Theory and Appl.,20, No. 4, 439?454 (1976). · Zbl 0326.49030 · doi:10.1007/BF00933130
[433] D. Rebhuhn, ?On the attainability set of nonlinear nonautonomous control systems,? SIAM J. Contr. and Optim.,15, No. 5, 803?812 (1977). · Zbl 0388.49024 · doi:10.1137/0315051
[434] D. Rebhuhn, ?On the stability of the existence of singular controls under perturbation of control systems,? SIAM J. Contr. and Optim.,16, No. 3, 463?472 (1978). · Zbl 0392.49001 · doi:10.1137/0316031
[435] W. Respondek, ?On decomposition of nonlinear control systems,? Syst. and Contr. Lett.,2, No. 5, 301?306 (1982). · Zbl 0499.93030 · doi:10.1016/S0167-6911(82)80027-3
[436] R. E. Rink and R. R. Mohler, ?Completely controllable bilinear systems,? SIAM J. Contr.,6, No. 3, 477?486 (1968). · Zbl 0159.13001 · doi:10.1137/0306030
[437] E. P. Ryan, ?Global asymptotic stabilization of a class of bilinear control systems,? Int. J. Contr.,38, No. 2, 359?367 (1983). · Zbl 0532.93042 · doi:10.1080/00207178308933080
[438] E. P. Ryan and N. J. Buckingham, ?On asymptotically stabilizing feedback control of bilinear systems,? IEEE Trans. Autom. Contr.,28, No. 8, 863?864 (1983). · Zbl 0535.93050 · doi:10.1109/TAC.1983.1103323
[439] G. Sallet, ?Complète contrôlabilité sur les groupes linéaires,? Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 215?227 (1981).
[440] I. W. Sanberg, ?Volterra-like expansions for solutions of nonlinear integral equations and nonlinear differential equations,? IEEE Trans. Circuits and Syst.,30, No. 2, 68?77 (1983). · Zbl 0527.93033 · doi:10.1109/TCS.1983.1085329
[441] I. W. Sanberg, ?On Volterra expansions for time-varying nonlinear systems,? IEEE Trans. Circuits and Syst.,30, No. 2, 61?67 (1983). · Zbl 0518.94017 · doi:10.1109/TCS.1983.1085328
[442] A. J. van der Schaft, ?Controllability and observability for affine nonlinear Hamiltonian systems,? IEEE Trans. Autom. Contr.,27, No. 2, 490?492 (1982). · Zbl 0484.93036 · doi:10.1109/TAC.1982.1102900
[443] A. J. van der Schaft, ?Hamiltonian dynamics with external forces and observations,? Math. Syst. Theory,15, No. 2, 145?168 (1982). · Zbl 0538.58010
[444] A. J. van der Schaft, ?Observability and controllability for smooth nonlinear systems,? SIAM J. Contr. and Optim.,20, No. 3, 338?354 (1982). · Zbl 0482.93039 · doi:10.1137/0320026
[445] Prodip Sen, ?On the choice of input for observability in bilinear systems,? Proc. Joint Autom. Contr. Conf., San Francisco, Calif., 1980, Vol. 2, s. 1, 214?217 (1980). · Zbl 0472.93017
[446] M. Shima and Y. Kita, ?Variational system theory,? Contr. Sci. and Techn. Progr. Soc. Proc. 8th Trienni. World Congr. Int. Fed. Autom. Contr. Kyoto, 24?28 Aug. 1981, Vol. 1, Oxford, 301?306 (1982). · Zbl 0524.93035
[447] S. N. Singh, ?Generalized decoupled-controlled synthesis for invertible nonlinear systems,? IEEE Proc.D128, No. 4, 157?161 (1981). · doi:10.1049/ip-d.1981.0029
[448] S. N. Singh, ?On stabilization of nonlinear Hamiltonian systems and nonconservative systems in elasticity,? Proc. 22nd IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., Dec. 16, 1981, Vol. 1?3, New York, 290?295 (1981). · Zbl 0501.73016
[449] S. N. Singh, ?A modified algorithm for invertibility in nonlinear systems,? IEEE Trans. Autom. Contr.,26, No. 5, 595?598 (1981). · Zbl 0488.93026 · doi:10.1109/TAC.1981.1102657
[450] S. N. Singh, ?Generalized functional reproducibility condition for nonlinear systems,? IEEE Trans. Automat. Contr.27, No. 5, 958?960 (1982). · Zbl 0487.93029 · doi:10.1109/TAC.1982.1103033
[451] S. N. Singh, ?Reproducibility in nonlinear systems using dynamic compensation and output feedback,? IEEE Trans. Autom. Contr.,27, No. 5, 955?958 (1982). · Zbl 0487.93028 · doi:10.1109/TAC.1982.1103034
[452] S. N. Singh, ?Invertibility of multivariable parabolic distributed parameter systems,? IEEE Trans. Autom. Contr.,27, No. 1, 276?279 (1982). · Zbl 0469.93052 · doi:10.1109/TAC.1982.1102857
[453] S. N. Singh, ?Invertibility of observable multivariable nonlinear systems,? IEEE Trans. Autom. Contr.,27, No. 2, 487?489 (1982). · Zbl 0492.93037 · doi:10.1109/TAC.1982.1102901
[454] S. N. Singh, ?Functional reproducibility and right invertibility in multivariable nonlinear systems,? 4 Congr. bras, autom., Campinas, 14?17 set. 1982, Anais, Vol. 2, Campinas, 683?387 (1982).
[455] H. Sira-Ramirez, ?On the convex hull of reachable sets for bilinear systems,? Proc. Joint Autom. Contr. Conf., San Francisco, Calif., 1980, Vol. 2, S. 1, 218?219 (1980).
[456] W. W. Smith, Jr. and W. J. Rugh, ?On the structure of a class of nonlinear systems,? IEEE Trans. Autom. Contr.,19, No. 6, 701?706 (1974). · Zbl 0293.93011 · doi:10.1109/TAC.1974.1100710
[457] G. Sonnevend, ?Solution of identification problems via realization theory,? Math. Models Phys. and Chem. and Numer. Meth. Realiz. Proc. Semin., Vesegrad, Oct. 1982, Leipzig, 107?115 (1984).
[458] E. D. Sontag, ?On the observability of polynomial systems. 1. Finite-time problems,? SIAM J. Contr. and Optim.17, No. 1, 139?151 (1979). · Zbl 0409.93013 · doi:10.1137/0317011
[459] E. D. Sontag, ?Polynomial response maps,? Lect. Notes Contr. and Inf. Sci.,13, VIII (1979).
[460] E. D. Sontag, ?An approximation theorem in nonlinear sampling,? Lect. Notes Contr. and Inf. Sci.,58, 806?812 (1984). · Zbl 0544.93050 · doi:10.1007/BFb0031102
[461] E. D. Sontag and H. Sussmann, ?Remarks on continuous feedback,? Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processess, Albuquerque, N. M., 1980, Vol. 2, New York, 916?921 (1980).
[462] E. D. Sontag and H. Sussmann, ?Accessibility under sampling,? Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8?10, 1982, Vol. 2, New York, 727?732 (1982). · doi:10.1109/CDC.1982.268236
[463] P. Stefan, ?Two proofs of Chow’s theorem,? Geometr. Meth. Syst. Theory, Dordrecht-Boston, 159?164 (1973). · Zbl 0273.49055
[464] P. Stefan, ?Accessibility and foliation with singularities,? Bull. Amer. Math. Soc.,80, No. 6, 1142?1145 (1974). · Zbl 0293.57015 · doi:10.1090/S0002-9904-1974-13648-7
[465] P. Stefan, ?Accessible sets, orbits, and foliations with singularities,? Proc. London Math. Soc.,29, No. 4, 699?713 (1974). · Zbl 0342.57015 · doi:10.1112/plms/s3-29.4.699
[466] P. Stefan, ?Accessibility and foliations,? Lect. Notes Math.,468, 10?12 (1975). · doi:10.1007/BFb0082579
[467] P. Stefan, ?Integrability of systems of vector fields,? J. London Math. Soc.,21, No. 3, 544?556 (1980). · Zbl 0432.58002 · doi:10.1112/jlms/s2-21.3.544
[468] P. Stefan and J. Taylor, ?A remark on a paper of D. L. Elliott,? J. Differ. Equat.,15, No. 1, 210?211 (1974). · Zbl 0273.49056 · doi:10.1016/0022-0396(74)90095-3
[469] G. Stefani and P. Zecca, ?Multivalued differential equations on manifolds with application to control theory,? Isr. J. math.,24, No. 4, 560?575 (1980). · Zbl 0471.58020
[470] R. J. Stern, ?On bilinear systems with coinciding attainable sets,? J. Math. Anal, and Appl.,72, No. 1, 329?337 (1979). · Zbl 0424.93011 · doi:10.1016/0022-247X(79)90292-0
[471] R. Su, ?On linear equivalents of nonlinear systems,? Systems and Contr. Lett.,2, No. 1, 48?52 (1982). · Zbl 0482.93041 · doi:10.1016/S0167-6911(82)80042-X
[472] R. Su and L. R. Hunt, ?A natural coordinate system for nonlinear systems,? Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14?16 Dec. 1983, Vol. 3, New York, 1402?1404 (1983).
[473] R. Su, L. R. Hunt, and G. Meyer, ?Theory of design using nonlinear transformations,? Proc. Amer. Contr. Conf. Arlington, Va., June 14?16, 1982, New York, 247?251 (1982).
[474] R. Su, L. R. Hunt, and G. Meyer, ?Robustness in nonlinear control,? Differ, Geom. Contr, Theory, Proc. Conf. Mich. Technol. Univ., June 28?July 2, 1982, Boston, 316?340 (1983).
[475] H. J. Sussmann, ?Dynamical systems on manifolds: accessibility and controllability,? IEEE Conf. Decis. and Contr. incl. 10th Symp. Adapt. Process., Miami Beach, Fla., 1971, New York, 188?191 (1971).
[476] H. J. Sussmann, ?The control problem \(\mathop {\dot x}\limits^{\overline{\overline {}} } = (A(1 - u) + Bu)x\) : A comment on an article of J. Ku?era,? Czechosl. Mat. J.,22, No. 3, 423?426 (1972).
[477] H. J. Sussmann, ?The bang-bang problem for certain control systems in Gl(n,R),? SIAM J. Contr.,10, No. 3, 470?476 (1972). · Zbl 0242.49041 · doi:10.1137/0310036
[478] H, J. Sussmann, ?The control problem \(\mathop {\dot x}\limits^{\overline{\overline {}} } = (A(u))x\) ,? Czechosl. Mat. J.,22, No. 3, 490?494 (1972). · doi:10.1007/BF01690957
[479] H. J. Sussmann, ?An extension of a theorem of Nagano on transitive Lie algebras,? Proc. Amer. Math. Soc.,45, No. 3, 349?356 (1974). · Zbl 0301.58003 · doi:10.1090/S0002-9939-1974-0356116-6
[480] H. J. Sussmann, ?Orbits of families of vector fields and integrability of systems with singularities,? Bull. Amer. Math. Soc.,79, No. 1, 197?199 (1973). · Zbl 0255.58001 · doi:10.1090/S0002-9904-1973-13152-0
[481] H. J. Sussmann, ?Orbits of families of vector fields and integrability of distributions,? Trans. Amer. Math. Soc.,180, 171?188 (1973). · Zbl 0274.58002 · doi:10.1090/S0002-9947-1973-0321133-2
[482] H. J. Sussmann, ?Minimal realizations of nonlinear systems,? Geometr. Meth. Syst. Theory, Dordrecht-Boston, 243?252 (1973). · Zbl 0291.93007
[483] H. J. Sussmann, ?On quotients of manifolds: a generalization of the closed subgroup theorem,? Bull. Amer. Math. Soc.,80, No. 3, 573?575 (1974). · Zbl 0301.58002 · doi:10.1090/S0002-9904-1974-13502-0
[484] H. J. Sussmann, ?A generalization of the closed subgroup theorem to quotients of arbitrary manifolds,? J. Differ. Geom.,10, No. 1, 151?166 (1975). · Zbl 0342.58004 · doi:10.4310/jdg/1214432680
[485] H. J. Sussmann, ?On the number of directions needed to achieve controllability,? SIAM J. Contr.,13, No. 2, 414?419 (1975). · Zbl 0268.93006 · doi:10.1137/0313024
[486] H. J. Sussmann, ?Some properties of vector field systems which are not altered by small perturbations,? J. Differ. Equat.,20, No. 2, 292?315 (1976). · Zbl 0346.49036 · doi:10.1016/0022-0396(76)90109-1
[487] H. J. Sussmann, ?Minimal realizations and canonical forms for bilinear systems,? J. Franklin Inst.,301, No. 6, 593?604 (1976). · Zbl 0335.93021 · doi:10.1016/0016-0032(76)90080-6
[488] H. J. Sussmann, ?Semigroup representation, bilinear approximation of input-output maps and generalized inputs,? Lect. Notes Econ. and Math. Syst.,131, 172?191 (1976). · Zbl 0353.93025 · doi:10.1007/978-3-642-48895-5_12
[489] H. J. Sussmann, ?Existence and uniqueness of minimal realizations of nonlinear systems,? Math. Syst. Theory,10, No. 3, 263?284 (1976?1977). · Zbl 0354.93017 · doi:10.1007/BF01683278
[490] H. J. Sussmann, ?A sufficient condition for local controllability,? SIAM J. Contr. and Optim.,16, No. 5, 790?802 (1978). · Zbl 0391.93004 · doi:10.1137/0316054
[491] H. J. Sussmann, ?Subanalytic sets and feedback control,? J. Differ. Equat.,31, No. 1, 31?52 (1979). · Zbl 0407.93010 · doi:10.1016/0022-0396(79)90151-7
[492] H. J. Sussmann, ?Generic single-input observability of continuous time polynomial systems,? Proc. 17th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., 1978, New York, 566?571 (1979). · Zbl 0428.93030
[493] H. J. Sussmann, ?Single-input observability of continuous-time systems,? Math. Syst. Theory,12, No. 4, 371?393 (1979). · Zbl 0422.93019 · doi:10.1007/BF01776584
[494] H. J. Sussmann, ?A bang-bang theorem with bounds on the number of switchings,? SIAM J. Contr. and Optim.,17, No. 5, 629?651 (1979). · Zbl 0427.49008 · doi:10.1137/0317045
[495] H. J. Sussmann, ?A bang-bang theorem with bounds on the number of switchings,? Proc. 18th IEEE Conf. Decis. and Contr. incl. Symp. Adapt, Processes, Fort Lauderdale, Fla., 1979, Vol. 1, New York, 473?475 (1979). · Zbl 0427.49008
[496] H. J. Sussmann, ?Piecewise analyticity of optimal cost function and optimal feedback,? AACC Proc. Joint Autom. Control. Conf., Denver, Colo., 1979, New York, 17?22 (1979).
[497] H. J. Sussmann, ?Les semi-groupes sous-analytiques et la régularité des commands en boucle fermée,? Astérisque, No. 75?76, 219?226 (1980).
[498] H. J. Sussmann, ?Analytic stratifications and control theory,? Proc. Int. Congr. Math., Helsinki, 15?23 Aug. 1978, Vol. 2, Helsinki, 865?872 (1980).
[499] H. J. Sussmann, ?Bounds on the number of switchings for trajectories of piecewise analytic vector fields,? J. Differ. Equat.,43, No. 3, 399?418 (1982). · Zbl 0488.34033 · doi:10.1016/0022-0396(82)90084-5
[500] H. J. Sussmann, ?Time-optimal control in the plane,? Lect. Notes Contr. and Inf. Sci.,39, 244?260 (1982). · Zbl 0516.93025 · doi:10.1007/BFb0006833
[501] H. J. Sussmann, ?Subanalytic sets and optimal control in the plane,? Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8?10, 1982, Vol. 1, New York, 295?299 (1982). · Zbl 0516.93025 · doi:10.1109/CDC.1982.268448
[502] H. J. Sussmann, ?Lie brackets, real analyticity, and geometric control,? Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ., June 28?July 2, 1982, Boston, 1?116 (1983).
[503] H. J. Sussmann, ?Lie brackets and local controllability: a sufficient condition for scalar-input systems,? SIAM J. Contr. and Optim.,21, No. 5, 686?713 (1983). · Zbl 0523.49026 · doi:10.1137/0321042
[504] H. J. Sussmann, ?A Lie-Volterra expansion for nonlinear systems,? Lect. Notes Contr. and Inf. Sci.,58, 822?828 (1984). · Zbl 0538.93032 · doi:10.1007/BFb0031104
[505] H. J. Sussmann and V. Jurdjevi?, ?Controllability of nonlinear systems,? J. Differ. Equat.,12, No. 1, 95?116 (1972). · Zbl 0242.49040 · doi:10.1016/0022-0396(72)90007-1
[506] Y. Takahara, B. Nakano, and H. Kubota, ?Stationarization functor and its concrete realizations,? Int. J. Gen. Syst.,9, No. 3, 133?141 (1983). · Zbl 0511.93017 · doi:10.1080/03081078308960811
[507] T. J. Tarn, John W. Clark, and G. M. Huang, ?Analytic controllability of quantum mechanical systems,? Lect. Notes Contr. and Inf. Sci.,58, 840?855 (1984). · Zbl 0539.93006 · doi:10.1007/BFb0031106
[508] K. Tchon, ?On some applications of transversality theory to system theory,? Syst. and Contr. Lett.,4, No. 3, 149?155 (1984). · Zbl 0538.93011 · doi:10.1016/S0167-6911(84)80017-1
[509] K. Tchon, ?Towards a global analysis of systems,? Int. J. Gen. Syst.,9, No. 3, 171?175 (1983). · Zbl 0515.93006 · doi:10.1080/03081078308960815
[510] J. Tokarzewski, ?Local controllability properties of nonlinear dynamical systems,? Arch, automat, i telemech.,22, No. 3, 175?199 (1977).
[511] J. Tokarzewski, ?Controllability of a class of locally-symmetrical nonlinear dynamical systems,? Arch, automat, i telemech.,24, No. 1, 29?41 (1979).
[512] J. Tsinias and V. J. Kalouptsidis, ?Transforming a controllable multi-input nonlinear system to a single-input controllable system by feedback,? Syst. and Contr. Lett.,2, No. 3, 173?178 (1981). · Zbl 0473.93042 · doi:10.1016/S0167-6911(81)80032-1
[513] J. Tsinias and V. J. Kalouptsidis, ?On stabilizability of nonlinear systems,? Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8?10, 1982, Vol. 2, New York, 712?716 (1982). · Zbl 0498.93024 · doi:10.1109/CDC.1982.268233
[514] S. A. Vakhrameev, ?On nonlinear differential games of pursuit,? Probl. upr. i teorii inf. (VNR),12, No. 5, 323?333 (1983).
[515] C. Var?an, ?Local controllability along a singular trajectory,? Rev. roum. math. pures et appl.,22, No. 7, 1011?1020 (1977).
[516] C. Var?an, ?On local controllability for nonlinear control systems,? Rev. roum. math, pures et appl.,29, No. 10, 907?919 (1984).
[517] G. Warnecke, ?On singular and bang-bang processes in optimal control,? Lect. Notes Contr. and Inf. Sci.,59, 345?353 (1984). · Zbl 0543.49011 · doi:10.1007/BFb0008908
[518] J. Wei and E. Norman, ?Lie algebraic solution of linear differential equations,? J. Math. Phys.,4, 575?581 (1963). · Zbl 0133.34202 · doi:10.1063/1.1703993
[519] J. Wei and E. Norman, ?On global representation of the solutions of linear differential equations,? Proc. Amer. Math. Soc.,15 486?488 (1964). · Zbl 0119.07202 · doi:10.1090/S0002-9939-1964-0160009-0
[520] K. C. Wei, ?A class of controllable nonlinear systems,? IEEE Trans. Automat. Contr.,21, No. 5, 787?789 (1976). · Zbl 0334.93010 · doi:10.1109/TAC.1976.1101347
[521] K. C. Wei and A. E. Pearson, ?On minimum energy control of commutative bilinear systems,? Proc. Joint Automat. Contr. Conf., San Francisco, 1977, Vol. 1, New York, 839?846 (1977). · Zbl 0388.49013
[522] K. C. Wei and A. E. Pearson, ?On minimum energy control of commutative bilinear systems,? IEEE-Trans. Automat. Contr.23, No. 6, 1020?1023 (1978). · Zbl 0388.49013 · doi:10.1109/TAC.1978.1101908
[523] K. C. Wei and A. E. Pearson, ?Global controllability for a class of bilinear systems,? IEEE Trans. Autom. Contr.,23, No. 3, 486?488 (1978). · Zbl 0397.93005 · doi:10.1109/TAC.1978.1101759
[524] J. C. Willems, ?Mathematical structures for the study of dynamical phenomena,? Nieuw, arch, wisk., ser. 4,1, No. 2, 159?192 (1983).
[525] M. Zeitz, ?Controllability canonical forms (phase-variable) for nonlinear systems,? Int. J. Contr.,37, No. 6, 1449?1457 (1983). · Zbl 0514.93012 · doi:10.1080/00207178308933056
[526] M. Zeitz, ?Observability canonical (phase-variable) forms for nonlinear time-variable systems,? Int. J. Syst. Sci.,15, No. 9, 249?258 (1984). · Zbl 0546.93011 · doi:10.1080/00207728408926614
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.