Mohameden, Hammah; Ouerdiane, Habib Feynman integrals for a new class of time-dependent exponentially growing potentials. (English) Zbl 1404.81109 Khrennikov, Andrei (ed.) et al., Quantum foundations, probability and information. Cham: Springer (ISBN 978-3-319-74970-9/hbk; 978-3-319-74971-6/ebook). STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 169-196 (2018). MSC: 81Q30 81S40 60H40 46G20 46F25 PDF BibTeX XML Cite \textit{H. Mohameden} and \textit{H. Ouerdiane}, in: Quantum foundations, probability and information. Cham: Springer. 169--196 (2018; Zbl 1404.81109) Full Text: DOI
Bock, W.; Grothaus, M. A white noise approach to phase space Feynman path integrals. (English) Zbl 1285.60071 Theory Probab. Math. Stat. 85, 7-22 (2012); translation from Teor. Jmovirn. Mat. Stat. 85, 7-21 (2011). Reviewer: Dora Seleši (Novi Sad) MSC: 60H40 46F25 81Q30 PDF BibTeX XML Cite \textit{W. Bock} and \textit{M. Grothaus}, Theory Probab. Math. Stat. 85, 7--22 (2012; Zbl 1285.60071); translation from Teor. Jmovirn. Mat. Stat. 85, 7--21 (2011) Full Text: DOI arXiv
Bodmann, Bernhard G. Construction of self-adjoint Berezin-Toeplitz operators on Kähler manifolds and a probabilistic representation of the associated semigroups. (English) Zbl 1029.81044 J. Geom. Phys. 47, No. 2-3, 128-160 (2003). Reviewer: Wang Cun-Zheng (Chengdu) MSC: 81S25 58D30 81S10 58J90 47B35 47D08 47N50 53D50 60J65 PDF BibTeX XML Cite \textit{B. G. Bodmann}, J. Geom. Phys. 47, No. 2--3, 128--160 (2003; Zbl 1029.81044) Full Text: DOI arXiv
Daubechies, Ingrid; Klauder, John R. Measures for more quadratic path integrals. (English) Zbl 0521.60078 Lett. Math. Phys. 7, 229-234 (1983). MSC: 60H99 81S40 PDF BibTeX XML Cite \textit{I. Daubechies} and \textit{J. R. Klauder}, Lett. Math. Phys. 7, 229--234 (1983; Zbl 0521.60078) Full Text: DOI