Li, Haizhong; Wang, Xianfeng; Wu, Jing Contracting axially symmetric hypersurfaces by powers of the \(\sigma_k\)-curvature. (English) Zbl 07328217 J. Geom. Anal. 31, No. 3, 2656-2702 (2021). MSC: 53E10 35B40 35K55 PDF BibTeX XML Cite \textit{H. Li} et al., J. Geom. Anal. 31, No. 3, 2656--2702 (2021; Zbl 07328217) Full Text: DOI
Lambert, Ben; Lotay, Jason D. Spacelike mean curvature flow. (English) Zbl 07328168 J. Geom. Anal. 31, No. 2, 1291-1359 (2021). MSC: 53C50 53C44 53C10 PDF BibTeX XML Cite \textit{B. Lambert} and \textit{J. D. Lotay}, J. Geom. Anal. 31, No. 2, 1291--1359 (2021; Zbl 07328168) Full Text: DOI
Guan, Zhanyu; Li, Fengjiang Self-shrinker type submanifolds in the Euclidean space. (English) Zbl 07323129 Bull. Iran. Math. Soc. 47, No. 1, 101-110 (2021). MSC: 53C40 53C42 53E10 PDF BibTeX XML Cite \textit{Z. Guan} and \textit{F. Li}, Bull. Iran. Math. Soc. 47, No. 1, 101--110 (2021; Zbl 07323129) Full Text: DOI
Lei, Li; Xu, Hongwei; Zhao, Entao Ancient solution of mean curvature flow in space forms. (English) Zbl 07319093 Trans. Am. Math. Soc. 374, No. 4, 2359-2381 (2021). MSC: 53E10 53C40 PDF BibTeX XML Cite \textit{L. Lei} et al., Trans. Am. Math. Soc. 374, No. 4, 2359--2381 (2021; Zbl 07319093) Full Text: DOI
Cheng, Qing-Ming; Wei, Guoxin Complete \(\lambda\)-surfaces in \(\mathbb{R}^3\). (English) Zbl 07313180 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 46, 20 p. (2021). MSC: 53A05 53E10 PDF BibTeX XML Cite \textit{Q.-M. Cheng} and \textit{G. Wei}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 46, 20 p. (2021; Zbl 07313180) Full Text: DOI
Lynch, Stephen; Nguyen, Huy The Pinched ancient solutions to the high codimension mean curvature flow. (English) Zbl 07309173 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 29, 14 p. (2021). MSC: 53E10 PDF BibTeX XML Cite \textit{S. Lynch} and \textit{H. T. Nguyen}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 29, 14 p. (2021; Zbl 07309173) Full Text: DOI
Cesaroni, Annalisa; Novaga, Matteo Symmetric self-shrinkers for the fractional mean curvature flow. (English) Zbl 07327607 J. Geom. Anal. 30, No. 4, 3698-3715 (2020). MSC: 53C44 35R11 49Q20 PDF BibTeX XML Cite \textit{A. Cesaroni} and \textit{M. Novaga}, J. Geom. Anal. 30, No. 4, 3698--3715 (2020; Zbl 07327607) Full Text: DOI
Kovács, Balázs; Li, Buyang; Lubich, Christian A convergent algorithm for forced mean curvature flow driven by diffusion on the surface. (English) Zbl 07307915 Interfaces Free Bound. 22, No. 4, 443-464 (2020). MSC: 35A35 35R01 65M60 65M15 65M12 53E10 35Q92 PDF BibTeX XML Cite \textit{B. Kovács} et al., Interfaces Free Bound. 22, No. 4, 443--464 (2020; Zbl 07307915) Full Text: DOI
Li, An-Min; Li, Xingxiao; Zhang, Di On the mean curvature flow of submanifolds in the standard Gaussian space. (English) Zbl 1453.53083 Result. Math. 75, No. 4, Paper No. 173, 38 p. (2020). MSC: 53E10 53B20 PDF BibTeX XML Cite \textit{A.-M. Li} et al., Result. Math. 75, No. 4, Paper No. 173, 38 p. (2020; Zbl 1453.53083) Full Text: DOI
Ding, Shanwei; Li, Guanghan A class of curvature flows expanded by support function and curvature function. (English) Zbl 07268399 Proc. Am. Math. Soc. 148, No. 12, 5331-5341 (2020). Reviewer: Shu-Yu Hsu (Chiayi) MSC: 53E10 53E99 PDF BibTeX XML Cite \textit{S. Ding} and \textit{G. Li}, Proc. Am. Math. Soc. 148, No. 12, 5331--5341 (2020; Zbl 07268399) Full Text: DOI
Cao, Shunjuan; Zhao, Entao On the compactness of hypersurfaces with finite total curvature via mean curvature flow. (English) Zbl 1450.53060 J. Geom. Phys. 158, Article ID 103857, 8 p. (2020). MSC: 53C40 53E10 PDF BibTeX XML Cite \textit{S. Cao} and \textit{E. Zhao}, J. Geom. Phys. 158, Article ID 103857, 8 p. (2020; Zbl 1450.53060) Full Text: DOI
Angenent, Sigurd; Daskalopoulos, Panagiota; Sesum, Natasa Uniqueness of two-convex closed ancient solutions to the mean curvature flow. (English) Zbl 07264133 Ann. Math. (2) 192, No. 2, 353-436 (2020). Reviewer: Shu-Yu Hsu (Chiayi) MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{S. Angenent} et al., Ann. Math. (2) 192, No. 2, 353--436 (2020; Zbl 07264133) Full Text: DOI
Hu, Yingxiang; Li, Haizhong; Wei, Yong; Zhou, Tailong Contraction of surfaces in hyperbolic space and in sphere. (English) Zbl 1451.53128 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 172, 31 p. (2020). MSC: 53E99 53E10 53C40 PDF BibTeX XML Cite \textit{Y. Hu} et al., Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 172, 31 p. (2020; Zbl 1451.53128) Full Text: DOI
Wang, Guofang; Weng, Liangjun A mean curvature type flow with capillary boundary in a unit ball. (English) Zbl 1448.53089 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 149, 26 p. (2020). MSC: 53E10 35K93 PDF BibTeX XML Cite \textit{G. Wang} and \textit{L. Weng}, Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 149, 26 p. (2020; Zbl 1448.53089) Full Text: DOI
Okabe, Shinya; Pozzi, Paola; Wheeler, Glen A gradient flow for the \(p\)-elastic energy defined on closed planar curves. (English) Zbl 1454.35227 Math. Ann. 378, No. 1-2, 777-828 (2020). Reviewer: Peter Lindqvist (Trondheim) MSC: 35K92 53A04 53E10 PDF BibTeX XML Cite \textit{S. Okabe} et al., Math. Ann. 378, No. 1--2, 777--828 (2020; Zbl 1454.35227) Full Text: DOI
Duan, Shuang-Shuang; He, Chun-Lei; Huang, Shou-Jun Hyperbolic mean curvature flow for Lagrangian graphs: one dimensional case. (English) Zbl 1448.35331 J. Geom. Phys. 157, Article ID 103853, 12 p. (2020). MSC: 35L65 35L03 53E10 35B44 PDF BibTeX XML Cite \textit{S.-S. Duan} et al., J. Geom. Phys. 157, Article ID 103853, 12 p. (2020; Zbl 1448.35331) Full Text: DOI
Langford, Mat; Lynch, Stephen Sharp one-sided curvature estimates for fully nonlinear curvature flows and applications to ancient solutions. (English) Zbl 1448.53087 J. Reine Angew. Math. 765, 1-33 (2020). MSC: 53E10 35K55 53C40 PDF BibTeX XML Cite \textit{M. Langford} and \textit{S. Lynch}, J. Reine Angew. Math. 765, 1--33 (2020; Zbl 1448.53087) Full Text: DOI
Lei, Li; Xu, Hongwei; Xu, Zhiyuan A new pinching theorem for complete self-shrinkers and its generalization. (English) Zbl 1446.53076 Sci. China, Math. 63, No. 6, 1139-1152 (2020). MSC: 53E10 53C24 53C40 PDF BibTeX XML Cite \textit{L. Lei} et al., Sci. China, Math. 63, No. 6, 1139--1152 (2020; Zbl 1446.53076) Full Text: DOI
Reuther, S.; Nitschke, I.; Voigt, Axel A numerical approach for fluid deformable surfaces. (English) Zbl 07239041 J. Fluid Mech. 900, Paper No. R8, 12 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{S. Reuther} et al., J. Fluid Mech. 900, Paper No. R8, 12 p. (2020; Zbl 07239041) Full Text: DOI
Chen, Li; Guo, Xi; Tu, Qiang Nonhomogeneous inverse mean curvature flow in Euclidean space. (English) Zbl 1446.53073 Proc. Am. Math. Soc. 148, No. 10, 4557-4571 (2020). MSC: 53E10 35J35 PDF BibTeX XML Cite \textit{L. Chen} et al., Proc. Am. Math. Soc. 148, No. 10, 4557--4571 (2020; Zbl 1446.53073) Full Text: DOI
Huang, Zheng; Lin, Longzhi; Zhang, Zhou Mean curvature flow in Fuchsian manifolds. (English) Zbl 1446.53075 Commun. Contemp. Math. 22, No. 7, Article ID 1950058, 20 p. (2020). MSC: 53E10 57M10 53C42 PDF BibTeX XML Cite \textit{Z. Huang} et al., Commun. Contemp. Math. 22, No. 7, Article ID 1950058, 20 p. (2020; Zbl 1446.53075) Full Text: DOI
Sesum, Natasa Ancient solutions in geometric flows. (English) Zbl 1444.53003 Chen, Jingyi (ed.) et al., Geometric analysis. In honor of Gang Tian’s 60th birthday. Cham: Birkhäuser. Prog. Math. 333, 445-463 (2020). MSC: 53-02 53E10 53E20 PDF BibTeX XML Cite \textit{N. Sesum}, Prog. Math. 333, 445--463 (2020; Zbl 1444.53003) Full Text: DOI
Cintra, Adriana Araujo; Leandro, Benedito; dos Santos Reis, Hiuri Fellipe A family of MCF solutions for the Heisenberg group. (English) Zbl 1441.53076 Differ. Geom. Appl. 71, Article ID 101633, 11 p. (2020). MSC: 53E10 35R03 14J26 53A25 PDF BibTeX XML Cite \textit{A. A. Cintra} et al., Differ. Geom. Appl. 71, Article ID 101633, 11 p. (2020; Zbl 1441.53076) Full Text: DOI
Julin, Vesa; La Manna, Domenico Angelo Short time existence of the classical solution to the fractional mean curvature flow. (English) Zbl 07208003 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 983-1016 (2020). MSC: 53E10 35R11 PDF BibTeX XML Cite \textit{V. Julin} and \textit{D. A. La Manna}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 983--1016 (2020; Zbl 07208003) Full Text: DOI
Bueno, Antonio; Gálvez, José A.; Mira, Pablo The global geometry of surfaces with prescribed mean curvature in \(\mathbb{R}^3\). (English) Zbl 1440.53007 Trans. Am. Math. Soc. 373, No. 6, 4437-4467 (2020). MSC: 53A10 53C42 PDF BibTeX XML Cite \textit{A. Bueno} et al., Trans. Am. Math. Soc. 373, No. 6, 4437--4467 (2020; Zbl 1440.53007) Full Text: DOI
Strehlke, Nicholas Asymptotics for the level set equation near a maximum. (English) Zbl 1441.35133 J. Reine Angew. Math. 763, 201-221 (2020). Reviewer: Dian K. Palagachev (Bari) MSC: 35J70 53C21 58J35 53A07 PDF BibTeX XML Cite \textit{N. Strehlke}, J. Reine Angew. Math. 763, 201--221 (2020; Zbl 1441.35133) Full Text: DOI
Li, Guanghan; Ma, Kuicheng The mean curvature type flow in Lorentzian warped product. (English) Zbl 1439.53081 Math. Phys. Anal. Geom. 23, No. 2, Paper No. 15, 15 p. (2020). MSC: 53E10 53C50 PDF BibTeX XML Cite \textit{G. Li} and \textit{K. Ma}, Math. Phys. Anal. Geom. 23, No. 2, Paper No. 15, 15 p. (2020; Zbl 1439.53081) Full Text: DOI
Isenberg, James; Wu, Haotian; Zhang, Zhou Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up. II. (English) Zbl 1436.53069 Adv. Math. 367, Article ID 107111, 44 p. (2020). MSC: 53E10 35K59 PDF BibTeX XML Cite \textit{J. Isenberg} et al., Adv. Math. 367, Article ID 107111, 44 p. (2020; Zbl 1436.53069) Full Text: DOI
Sheng, Weimin; Yi, Caihong A class of anisotropic expanding curvature flows. (English) Zbl 1433.53118 Discrete Contin. Dyn. Syst. 40, No. 4, 2017-2035 (2020). MSC: 53E10 35K96 53A07 35K55 PDF BibTeX XML Cite \textit{W. Sheng} and \textit{C. Yi}, Discrete Contin. Dyn. Syst. 40, No. 4, 2017--2035 (2020; Zbl 1433.53118) Full Text: DOI
Zhang, Longjie On curvature flow with driving force starting as singular initial curve in the plane. (English) Zbl 1439.35309 J. Geom. Anal. 30, No. 2, 2036-2091 (2020). MSC: 35K93 35A01 35A02 35K55 53E10 PDF BibTeX XML Cite \textit{L. Zhang}, J. Geom. Anal. 30, No. 2, 2036--2091 (2020; Zbl 1439.35309) Full Text: DOI
Kim, Inwon; Kwon, Dohyun On mean curvature flow with forcing. (English) Zbl 1439.35242 Commun. Partial Differ. Equations 45, No. 5, 414-455 (2020). MSC: 35K55 35B30 35D40 53E10 35K93 PDF BibTeX XML Cite \textit{I. Kim} and \textit{D. Kwon}, Commun. Partial Differ. Equations 45, No. 5, 414--455 (2020; Zbl 1439.35242) Full Text: DOI
Li, Xingxiao; Zhang, Di The blow-up of the conformal mean curvature flow. (English) Zbl 1435.53066 Sci. China, Math. 63, No. 4, 733-754 (2020). MSC: 53E10 PDF BibTeX XML Cite \textit{X. Li} and \textit{D. Zhang}, Sci. China, Math. 63, No. 4, 733--754 (2020; Zbl 1435.53066) Full Text: DOI
Ma, Li; Miquel, Vicente Bernstein theorem for translating solitons of hypersurfaces. (English) Zbl 07184122 Manuscr. Math. 162, No. 1-2, 115-132 (2020). MSC: 53C21 53E10 PDF BibTeX XML Cite \textit{L. Ma} and \textit{V. Miquel}, Manuscr. Math. 162, No. 1--2, 115--132 (2020; Zbl 07184122) Full Text: DOI
Minarčík, Jiří; Beneš, Michal Long-term behavior of curve shortening flow in \(\mathbb{R}^3\). (English) Zbl 1435.53067 SIAM J. Math. Anal. 52, No. 2, 1221-1231 (2020). MSC: 53E10 53A04 PDF BibTeX XML Cite \textit{J. Minarčík} and \textit{M. Beneš}, SIAM J. Math. Anal. 52, No. 2, 1221--1231 (2020; Zbl 1435.53067) Full Text: DOI
Li, Qi-Rui; Sheng, Weimin; Wang, Xu-Jia Asymptotic convergence for a class of fully nonlinear curvature flows. (English) Zbl 1434.53096 J. Geom. Anal. 30, No. 1, 834-860 (2020). MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{Q.-R. Li} et al., J. Geom. Anal. 30, No. 1, 834--860 (2020; Zbl 1434.53096) Full Text: DOI
Li, Guanghan; Lv, Yusha Contracting convex hypersurfaces in space form by non-homogeneous curvature function. (English) Zbl 1444.53057 J. Geom. Anal. 30, No. 1, 417-447 (2020). MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{G. Li} and \textit{Y. Lv}, J. Geom. Anal. 30, No. 1, 417--447 (2020; Zbl 1444.53057) Full Text: DOI
Mori, Ryunosuke; Zhang, Longjie On mean curvature flow with driving force for symmetric motion with singular initial hypersurface. (English) Zbl 1437.53073 J. Differ. Equations 268, No. 10, 6137-6172 (2020). MSC: 53E10 53A07 35K93 35A01 35A02 35K55 PDF BibTeX XML Cite \textit{R. Mori} and \textit{L. Zhang}, J. Differ. Equations 268, No. 10, 6137--6172 (2020; Zbl 1437.53073) Full Text: DOI
Kang, Hyunsuk; Kim, Lami; Lee, Ki-Ahm Anisotropic flow of convex hypersurfaces by the square root of the scalar curvature. (English) Zbl 1431.53012 J. Differ. Equations 268, No. 5, 2210-2245 (2020). MSC: 53A07 53C21 53E10 PDF BibTeX XML Cite \textit{H. Kang} et al., J. Differ. Equations 268, No. 5, 2210--2245 (2020; Zbl 1431.53012) Full Text: DOI arXiv
Colding, Tobias Holck; Minicozzi, William P. II Dynamics of closed singularities. (Dynamique des singularités fermées.) (English. French summary) Zbl 1453.58007 Ann. Inst. Fourier 69, No. 7, 2973-3016 (2019). Reviewer: Marius Ghergu (Dublin) MSC: 58J35 35K10 PDF BibTeX XML Cite \textit{T. H. Colding} and \textit{W. P. Minicozzi II}, Ann. Inst. Fourier 69, No. 7, 2973--3016 (2019; Zbl 1453.58007) Full Text: DOI
Kröner, Heiko Non-collapsing in homogeneity greater than one via a two-point method for a special case. (English) Zbl 1433.53126 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 6, 1627-1635 (2019). MSC: 53E99 58J35 35B50 PDF BibTeX XML Cite \textit{H. Kröner}, Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 6, 1627--1635 (2019; Zbl 1433.53126) Full Text: DOI
He, Shuhui; Wheeler, Glen; Wheeler, Valentina-Mira On a curvature flow model for embryonic epidermal wound healing. (English) Zbl 1429.53075 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111581, 41 p. (2019). MSC: 53C42 53E99 58J35 35Q92 92C45 PDF BibTeX XML Cite \textit{S. He} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111581, 41 p. (2019; Zbl 1429.53075) Full Text: DOI arXiv
Kabelitz, C.; Linz, S. J. The dynamics of geometric PDEs: surface evolution equations and a comparison with their small gradient approximations. (English) Zbl 1430.53106 Chaos 29, No. 10, 103119, 15 p. (2019). MSC: 53E99 35K55 PDF BibTeX XML Cite \textit{C. Kabelitz} and \textit{S. J. Linz}, Chaos 29, No. 10, 103119, 15 p. (2019; Zbl 1430.53106) Full Text: DOI
Kovács, Balázs; Li, Buyang; Lubich, Christian A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. (English) Zbl 1427.65250 Numer. Math. 143, No. 4, 797-853 (2019). MSC: 65M60 65M15 65M12 35R01 PDF BibTeX XML Cite \textit{B. Kovács} et al., Numer. Math. 143, No. 4, 797--853 (2019; Zbl 1427.65250) Full Text: DOI arXiv
Li, Haozhao; Wang, Bing The extension problem of the mean curvature flow (I). (English) Zbl 07127766 Invent. Math. 218, No. 3, 721-777 (2019). MSC: 53C44 58J PDF BibTeX XML Cite \textit{H. Li} and \textit{B. Wang}, Invent. Math. 218, No. 3, 721--777 (2019; Zbl 07127766) Full Text: DOI arXiv
Huang, Hong Backwards uniqueness of the mean curvature flow. (English) Zbl 1428.53100 Geom. Dedicata 203, 67-71 (2019). MSC: 53E10 53A07 PDF BibTeX XML Cite \textit{H. Huang}, Geom. Dedicata 203, 67--71 (2019; Zbl 1428.53100) Full Text: DOI
Scheuer, Julian; Xia, Chao Locally constrained inverse curvature flows. (English) Zbl 1427.53111 Trans. Am. Math. Soc. 372, No. 10, 6771-6803 (2019). MSC: 53E99 53C21 53C24 PDF BibTeX XML Cite \textit{J. Scheuer} and \textit{C. Xia}, Trans. Am. Math. Soc. 372, No. 10, 6771--6803 (2019; Zbl 1427.53111) Full Text: DOI
Haslhofer, Robert; Ketover, Daniel Minimal 2-spheres in 3-spheres. (English) Zbl 1426.49042 Duke Math. J. 168, No. 10, 1929-1975 (2019). Reviewer: Andrew Bucki (Edmond) MSC: 49Q05 53E10 58E12 49J35 PDF BibTeX XML Cite \textit{R. Haslhofer} and \textit{D. Ketover}, Duke Math. J. 168, No. 10, 1929--1975 (2019; Zbl 1426.49042) Full Text: DOI Euclid
Zhang, Zhuhong A note on the backwards uniqueness of the mean curvature flow. (English) Zbl 1423.53083 Sci. China, Math. 62, No. 9, 1793-1798 (2019). MSC: 53C44 PDF BibTeX XML Cite \textit{Z. Zhang}, Sci. China, Math. 62, No. 9, 1793--1798 (2019; Zbl 1423.53083) Full Text: DOI
Isenberg, James; Wu, Haotian Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up. (English) Zbl 1425.53082 J. Reine Angew. Math. 754, 225-251 (2019). MSC: 53C44 53A07 35K59 PDF BibTeX XML Cite \textit{J. Isenberg} and \textit{H. Wu}, J. Reine Angew. Math. 754, 225--251 (2019; Zbl 1425.53082) Full Text: DOI arXiv
Baspinar, E.; Citti, G. Uniqueness of viscosity mean curvature flow solution in two sub-Riemannian structures. (English) Zbl 1421.53038 SIAM J. Math. Anal. 51, No. 3, 2633-2659 (2019). MSC: 53C17 35K55 35D40 58J60 PDF BibTeX XML Cite \textit{E. Baspinar} and \textit{G. Citti}, SIAM J. Math. Anal. 51, No. 3, 2633--2659 (2019; Zbl 1421.53038) Full Text: DOI
De Araujo, Anderson L. A.; Montenegro, Marcelo A class of parabolic equations driven by the mean curvature flow. (English) Zbl 1440.35200 Proc. Edinb. Math. Soc., II. Ser. 62, No. 1, 135-163 (2019). MSC: 35K93 35B35 35B40 35K55 35K57 53E10 53A04 53A05 58J35 PDF BibTeX XML Cite \textit{A. L. A. De Araujo} and \textit{M. Montenegro}, Proc. Edinb. Math. Soc., II. Ser. 62, No. 1, 135--163 (2019; Zbl 1440.35200) Full Text: DOI
Guan, Pengfei; Li, Junfang; Wang, Mu-Tao A volume preserving flow and the isoperimetric problem in warped product spaces. (English) Zbl 1421.53067 Trans. Am. Math. Soc. 372, No. 4, 2777-2798 (2019). Reviewer: Bożena Piątek (Gliwice) MSC: 53C44 53C23 PDF BibTeX XML Cite \textit{P. Guan} et al., Trans. Am. Math. Soc. 372, No. 4, 2777--2798 (2019; Zbl 1421.53067) Full Text: DOI arXiv
López, Rafael; Ruiz-Hernández, Gabriel Surfaces with a canonical principal direction and prescribed mean curvature. (English) Zbl 1420.53011 Ann. Mat. Pura Appl. (4) 198, No. 4, 1471-1479 (2019). MSC: 53A05 53B25 PDF BibTeX XML Cite \textit{R. López} and \textit{G. Ruiz-Hernández}, Ann. Mat. Pura Appl. (4) 198, No. 4, 1471--1479 (2019; Zbl 1420.53011) Full Text: DOI
Massamba, Fortuné; Ssekajja, Samuel Null hypersurfaces evolved by their mean curvature in a Lorentzian manifold. (English) Zbl 1428.53080 Colloq. Math. 157, No. 1, 83-106 (2019). Reviewer: Renato G. Bettiol (Bronx) MSC: 53C50 53E10 53C40 83C57 PDF BibTeX XML Cite \textit{F. Massamba} and \textit{S. Ssekajja}, Colloq. Math. 157, No. 1, 83--106 (2019; Zbl 1428.53080) Full Text: DOI
Guo, Shunzi Horospherical convex hypersurfaces contracting of the hyperbolic space by functions of the mean curvature. (English) Zbl 1420.53074 Int. J. Math. 30, No. 8, Article ID 1950039, 22 p. (2019). MSC: 53C44 35K55 58J35 35B40 PDF BibTeX XML Cite \textit{S. Guo}, Int. J. Math. 30, No. 8, Article ID 1950039, 22 p. (2019; Zbl 1420.53074) Full Text: DOI
Pepa, R. Yu. Simulation of mean curvature flows on surfaces of revolution. (English. Russian original) Zbl 1423.53082 Comput. Math. Math. Phys. 59, No. 2, 290-300 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 2, 301-312 (2019). Reviewer: Hans-Peter Schröcker (Innsbruck) MSC: 53C44 65M60 53A07 PDF BibTeX XML Cite \textit{R. Yu. Pepa}, Comput. Math. Math. Phys. 59, No. 2, 290--300 (2019; Zbl 1423.53082); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 2, 301--312 (2019) Full Text: DOI
Lam, Casey; Lauer, Joseph The level-set flow of the topologist’s sine curve is smooth. (English) Zbl 1416.53064 J. Geom. Anal. 29, No. 2, 1019-1031 (2019). MSC: 53C44 PDF BibTeX XML Cite \textit{C. Lam} and \textit{J. Lauer}, J. Geom. Anal. 29, No. 2, 1019--1031 (2019; Zbl 1416.53064) Full Text: DOI arXiv
Brendle, Simon; Choi, Kyeongsu Uniqueness of convex ancient solutions to mean curvature flow in \({\mathbb {R}}^3\). (English) Zbl 1414.53059 Invent. Math. 217, No. 1, 35-76 (2019). Reviewer: Dian K. Palagachev (Bari) MSC: 53C44 35K55 53A10 58E12 PDF BibTeX XML Cite \textit{S. Brendle} and \textit{K. Choi}, Invent. Math. 217, No. 1, 35--76 (2019; Zbl 1414.53059) Full Text: DOI
Li, Martin Man-chun Chord shortening flow and a theorem of Lusternik and Schnirelmann. (English) Zbl 1415.53027 Pac. J. Math. 299, No. 2, 469-488 (2019). MSC: 53C22 58E10 PDF BibTeX XML Cite \textit{M. M. c. Li}, Pac. J. Math. 299, No. 2, 469--488 (2019; Zbl 1415.53027) Full Text: DOI
Kröner, Heiko A note on expansion of convex plane curves via inverse curvature flow. (English) Zbl 1414.35121 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 2, Paper No. 9, 11 p. (2019). MSC: 35K93 35B40 53B50 53C44 PDF BibTeX XML Cite \textit{H. Kröner}, NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 2, Paper No. 9, 11 p. (2019; Zbl 1414.35121) Full Text: DOI arXiv
Koike, Naoyuki Equifocal submanifolds in a symmetric space and the infinite dimensional geometry. (English. Japanese original) Zbl 1426.53075 Sugaku Expo. 32, No. 1, 25-56 (2019); translation from Sūgaku 67, No. 1, 26-54 (2015). MSC: 53C40 53-02 53C35 PDF BibTeX XML Full Text: DOI
Dipierro, Serena; Novaga, Matteo; Valdinoci, Enrico On a Minkowski geometric flow in the plane: evolution of curves with lack of scale invariance. (English) Zbl 1427.53110 J. Lond. Math. Soc., II. Ser. 99, No. 1, 31-51 (2019). Reviewer: Raúl Oset Sinha (València) MSC: 53E99 53A04 35C07 35K93 68U10 PDF BibTeX XML Cite \textit{S. Dipierro} et al., J. Lond. Math. Soc., II. Ser. 99, No. 1, 31--51 (2019; Zbl 1427.53110) Full Text: DOI
Li, Haizhong; Wang, Xianfeng; Wei, Yong Surfaces expanding by non-concave curvature functions. (English) Zbl 1446.53077 Ann. Global Anal. Geom. 55, No. 2, 243-279 (2019). Reviewer: Hans-Bert Rademacher (Leipzig) MSC: 53E10 53C21 58J35 PDF BibTeX XML Cite \textit{H. Li} et al., Ann. Global Anal. Geom. 55, No. 2, 243--279 (2019; Zbl 1446.53077) Full Text: DOI
Cui, Qing; Sun, Linlin Some differentiable sphere theorems. (English) Zbl 1409.53035 Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 43, 24 p. (2019). Reviewer: Andreas Arvanitoyeorgos (Patras) MSC: 53C20 53C40 PDF BibTeX XML Cite \textit{Q. Cui} and \textit{L. Sun}, Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 43, 24 p. (2019; Zbl 1409.53035) Full Text: DOI
Song, Chong; Sun, Jun Skew mean curvature flow. (English) Zbl 1405.53093 Commun. Contemp. Math. 21, No. 1, Article ID 1750090, 29 p. (2019). MSC: 53C44 37K65 53Z05 PDF BibTeX XML Cite \textit{C. Song} and \textit{J. Sun}, Commun. Contemp. Math. 21, No. 1, Article ID 1750090, 29 p. (2019; Zbl 1405.53093) Full Text: DOI arXiv
Liu, Qing; Nakayasu, Atsushi Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces. (English) Zbl 1406.35093 Discrete Contin. Dyn. Syst. 39, No. 1, 157-183 (2019). MSC: 35F21 35E10 49L25 35D40 35B05 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{A. Nakayasu}, Discrete Contin. Dyn. Syst. 39, No. 1, 157--183 (2019; Zbl 1406.35093) Full Text: DOI arXiv
Bianchi, Gabriele; Böröczky, Károly J.; Colesanti, Andrea; Yang, Deane The \(L_{p}\)-Minkowski problem for \(-n < p < 1\). (English) Zbl 1406.52016 Adv. Math. 341, 493-535 (2019). Reviewer: Andrew Bucki (Edmond) MSC: 52A38 35J96 52A20 PDF BibTeX XML Cite \textit{G. Bianchi} et al., Adv. Math. 341, 493--535 (2019; Zbl 1406.52016) Full Text: DOI
Koike, Naoyuki Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces. (English) Zbl 1440.41008 Cubo 20, No. 3, 13-29 (2018). MSC: 41A17 41A25 41A30 41A35 PDF BibTeX XML Cite \textit{N. Koike}, Cubo 20, No. 3, 13--29 (2018; Zbl 1440.41008) Full Text: DOI
Mramor, Alexander A finiteness theorem via the mean curvature flow with surgery. (English) Zbl 1407.53072 J. Geom. Anal. 28, No. 4, 3348-3372 (2018). MSC: 53C44 PDF BibTeX XML Cite \textit{A. Mramor}, J. Geom. Anal. 28, No. 4, 3348--3372 (2018; Zbl 1407.53072) Full Text: DOI arXiv
Kröner, Axel; Kröner, Eva; Kröner, Heiko Finite element approximation of level set motion by powers of the mean curvature. (English) Zbl 1404.35215 SIAM J. Sci. Comput. 40, No. 6, A4158-A4183 (2018). MSC: 35J93 65L60 35D40 PDF BibTeX XML Cite \textit{A. Kröner} et al., SIAM J. Sci. Comput. 40, No. 6, A4158--A4183 (2018; Zbl 1404.35215) Full Text: DOI
Mao, Jing Monotonicity of the first eigenvalue of the Laplace and the \(p\)-Laplace operators under a forced mean curvature flow. (English) Zbl 1412.58004 J. Korean Math. Soc. 55, No. 6, 1435-1458 (2018). Reviewer: Salah Mehdi (Metz) MSC: 58C40 53C44 PDF BibTeX XML Cite \textit{J. Mao}, J. Korean Math. Soc. 55, No. 6, 1435--1458 (2018; Zbl 1412.58004) Full Text: Link
Zeng, Fanqi; He, Qun; Chen, Bin The mean curvature flow in Minkowski spaces. (English) Zbl 1401.53056 Sci. China, Math. 61, No. 10, 1833-1850 (2018). MSC: 53C44 53C60 51B20 PDF BibTeX XML Cite \textit{F. Zeng} et al., Sci. China, Math. 61, No. 10, 1833--1850 (2018; Zbl 1401.53056) Full Text: DOI arXiv
Qi, Yuanwei; Zheng, Gao-Feng Convergence of solutions of the weighted Allen-Cahn equations to Brakke type flow. (English) Zbl 1428.35180 Calc. Var. Partial Differ. Equ. 57, No. 5, Paper No. 133, 41 p. (2018). MSC: 35K58 53E10 28A75 35B25 35K20 PDF BibTeX XML Cite \textit{Y. Qi} and \textit{G.-F. Zheng}, Calc. Var. Partial Differ. Equ. 57, No. 5, Paper No. 133, 41 p. (2018; Zbl 1428.35180) Full Text: DOI
Bertini, Maria Chiara; Sinestrari, Carlo Volume preserving flow by powers of symmetric polynomials in the principal curvatures. (English) Zbl 06928360 Math. Z. 289, No. 3-4, 1219-1236 (2018). MSC: 53E10 53A07 35B40 PDF BibTeX XML Cite \textit{M. C. Bertini} and \textit{C. Sinestrari}, Math. Z. 289, No. 3--4, 1219--1236 (2018; Zbl 06928360) Full Text: DOI arXiv
Koike, Naoyuki A modified mean curvature flow in Euclidean space and soap bubbles in symmetric spaces. (A modfied mean curvature flow in Euclidean space and soap bubbles in symmetric spaces.) (English) Zbl 1412.53094 Geom. Dedicata 195, 1-17 (2018). Reviewer: Patrice Sawyer (Sudbury) MSC: 53C44 53C35 PDF BibTeX XML Cite \textit{N. Koike}, Geom. Dedicata 195, 1--17 (2018; Zbl 1412.53094) Full Text: DOI arXiv
Bertini, Maria Chiara; Sinestrari, Carlo Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces. (English) Zbl 1395.53071 Ann. Mat. Pura Appl. (4) 197, No. 4, 1295-1309 (2018). MSC: 53C44 35B40 PDF BibTeX XML Cite \textit{M. C. Bertini} and \textit{C. Sinestrari}, Ann. Mat. Pura Appl. (4) 197, No. 4, 1295--1309 (2018; Zbl 1395.53071) Full Text: DOI arXiv
Bellettini, Giovanni; Kholmatov, Shokhrukh Yu. Minimizing movements for mean curvature flow of partitions. (English) Zbl 1396.53089 SIAM J. Math. Anal. 50, No. 4, 4117-4148 (2018). Reviewer: Patrick Winkert (Berlin) MSC: 53C44 35D30 49J45 49J53 PDF BibTeX XML Cite \textit{G. Bellettini} and \textit{S. Yu. Kholmatov}, SIAM J. Math. Anal. 50, No. 4, 4117--4148 (2018; Zbl 1396.53089) Full Text: DOI
Chen, Li; Mao, Jing Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold. (English) Zbl 1393.53056 J. Geom. Anal. 28, No. 2, 921-949 (2018). MSC: 53C44 35J35 53C50 PDF BibTeX XML Cite \textit{L. Chen} and \textit{J. Mao}, J. Geom. Anal. 28, No. 2, 921--949 (2018; Zbl 1393.53056) Full Text: DOI
Castro, Ildefonso; Lerma, Ana M.; Miquel, Vicente Evolution by mean curvature flow of Lagrangian spherical surfaces in complex Euclidean plane. (English) Zbl 1391.53075 J. Math. Anal. Appl. 462, No. 1, 637-647 (2018). MSC: 53C44 53D12 PDF BibTeX XML Cite \textit{I. Castro} et al., J. Math. Anal. Appl. 462, No. 1, 637--647 (2018; Zbl 1391.53075) Full Text: DOI arXiv
Cheng, Qing-Ming; Wei, Guoxin Complete \(\lambda \)-hypersurfaces of weighted volume-preserving mean curvature flow. (English) Zbl 1395.53072 Calc. Var. Partial Differ. Equ. 57, No. 2, Paper No. 32, 21 p. (2018). Reviewer: Atsushi Fujioka (Osaka) MSC: 53C44 53C42 PDF BibTeX XML Cite \textit{Q.-M. Cheng} and \textit{G. Wei}, Calc. Var. Partial Differ. Equ. 57, No. 2, Paper No. 32, 21 p. (2018; Zbl 1395.53072) Full Text: DOI arXiv
Caffarelli, Luis A.; Yu, Hui A curvature flow in the plane with a nonlocal term. (English) Zbl 1393.53007 Calc. Var. Partial Differ. Equ. 57, No. 2, Paper No. 29, 8 p. (2018). Reviewer: Laurian Ioan Piscoran (Baia Mare) MSC: 53A05 35K10 53C44 PDF BibTeX XML Cite \textit{L. A. Caffarelli} and \textit{H. Yu}, Calc. Var. Partial Differ. Equ. 57, No. 2, Paper No. 29, 8 p. (2018; Zbl 1393.53007) Full Text: DOI
Guilfoyle, Brendan; Klingenberg, Wilhelm Parabolic classical curvature flows. (English) Zbl 1404.53002 J. Aust. Math. Soc. 104, No. 3, 338-357 (2018). Reviewer: James P. Howard II (Columbia) MSC: 53A05 35K40 PDF BibTeX XML Cite \textit{B. Guilfoyle} and \textit{W. Klingenberg}, J. Aust. Math. Soc. 104, No. 3, 338--357 (2018; Zbl 1404.53002) Full Text: DOI arXiv
Guo, Siao-Hao; Sesum, Natasa Analysis of Velázquez’s solution to the mean curvature flow with a type II singularity. (English) Zbl 1388.53062 Commun. Partial Differ. Equations 43, No. 2, 185-285 (2018). MSC: 53C44 PDF BibTeX XML Cite \textit{S.-H. Guo} and \textit{N. Sesum}, Commun. Partial Differ. Equations 43, No. 2, 185--285 (2018; Zbl 1388.53062) Full Text: DOI
Drugan, Gregory; Lee, Hojoo; Nguyen, Xuan Hien A survey of closed self-shrinkers with symmetry. (English) Zbl 1386.53080 Result. Math. 73, No. 1, Paper No. 32, 32 p. (2018). MSC: 53C44 53C42 53C22 PDF BibTeX XML Cite \textit{G. Drugan} et al., Result. Math. 73, No. 1, Paper No. 32, 32 p. (2018; Zbl 1386.53080) Full Text: DOI arXiv
Cinti, Eleonora; Sinestrari, Carlo; Valdinoci, Enrico Neckpinch singularities in fractional mean curvature flows. (English) Zbl 1390.53068 Proc. Am. Math. Soc. 146, No. 6, 2637-2646 (2018). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 53C44 35R11 35D40 PDF BibTeX XML Cite \textit{E. Cinti} et al., Proc. Am. Math. Soc. 146, No. 6, 2637--2646 (2018; Zbl 1390.53068) Full Text: DOI arXiv
Yang, Yunlong; Zhang, Deyan Deforming a convex domain into a disk by Klain’s cyclic rearrangement. (English) Zbl 1390.52006 Bull. Aust. Math. Soc. 97, No. 2, 313-319 (2018). Reviewer: Marek Lassak (Bydgoszcz) MSC: 52A10 52A40 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{D. Zhang}, Bull. Aust. Math. Soc. 97, No. 2, 313--319 (2018; Zbl 1390.52006) Full Text: DOI
Li, Guanghan; Lv, Yusha Flow of pinched convex hypersurfaces by powers of curvature functions in hyperbolic space. (English) Zbl 1381.53120 J. Math. Anal. Appl. 460, No. 2, 808-837 (2018). MSC: 53C44 53C42 PDF BibTeX XML Cite \textit{G. Li} and \textit{Y. Lv}, J. Math. Anal. Appl. 460, No. 2, 808--837 (2018; Zbl 1381.53120) Full Text: DOI
Han, Xiaoli; Li, Jiayu; Zhao, Liang A mean-curvature flow along a Kähler-Ricci flow. (English) Zbl 1381.53116 Int. J. Math. 29, No. 1, Article ID 1850006, 25 p. (2018). MSC: 53C44 58J35 PDF BibTeX XML Cite \textit{X. Han} et al., Int. J. Math. 29, No. 1, Article ID 1850006, 25 p. (2018; Zbl 1381.53116) Full Text: DOI
McCoy, James A. Curvature contraction flows in the sphere. (English) Zbl 1381.53122 Proc. Am. Math. Soc. 146, No. 3, 1243-1256 (2018). Reviewer: Vincenzo Vespri (Firenze) MSC: 53C44 35K55 35B65 PDF BibTeX XML Cite \textit{J. A. McCoy}, Proc. Am. Math. Soc. 146, No. 3, 1243--1256 (2018; Zbl 1381.53122) Full Text: DOI
Bernstein, Jacob; Wang, Lu Topology of closed hypersurfaces of small entropy. (English) Zbl 1381.53112 Geom. Topol. 22, No. 2, 1109-1141 (2018). MSC: 53C44 35K55 57R65 PDF BibTeX XML Cite \textit{J. Bernstein} and \textit{L. Wang}, Geom. Topol. 22, No. 2, 1109--1141 (2018; Zbl 1381.53112) Full Text: DOI
Liu, Kefeng; Xu, Hongwei; Ye, Fei; Zhao, Entao The extension and convergence of mean curvature flow in higher codimension. (English) Zbl 1380.53076 Trans. Am. Math. Soc. 370, No. 3, 2231-2262 (2018). MSC: 53C44 53A07 PDF BibTeX XML Cite \textit{K. Liu} et al., Trans. Am. Math. Soc. 370, No. 3, 2231--2262 (2018; Zbl 1380.53076) Full Text: DOI arXiv
Ma, Xi-Nan; Wang, Pei-He; Wei, Wei Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains. (English) Zbl 1376.53087 J. Funct. Anal. 274, No. 1, 252-277 (2018). MSC: 53C44 53A07 PDF BibTeX XML Cite \textit{X.-N. Ma} et al., J. Funct. Anal. 274, No. 1, 252--277 (2018; Zbl 1376.53087) Full Text: DOI
Appleboim, Eli From normal surfaces to normal curves to geodesics on surfaces. (English) Zbl 1422.68238 Axioms 6, No. 3, Paper No. 26, 21 p. (2017). MSC: 68U05 PDF BibTeX XML Cite \textit{E. Appleboim}, Axioms 6, No. 3, Paper No. 26, 21 p. (2017; Zbl 1422.68238) Full Text: DOI
McCoy, James A. More mixed volume preserving curvature flows. (English) Zbl 1386.53084 J. Geom. Anal. 27, No. 4, 3140-3165 (2017). MSC: 53C44 35K55 PDF BibTeX XML Cite \textit{J. A. McCoy}, J. Geom. Anal. 27, No. 4, 3140--3165 (2017; Zbl 1386.53084) Full Text: DOI
Swartz, Drew; Yip, Nung Kwan Convergence of diffusion generated motion to motion by mean curvature. (English) Zbl 1387.35389 Commun. Partial Differ. Equations 42, No. 10, 1598-1643 (2017). MSC: 35K93 35B25 35K08 PDF BibTeX XML Cite \textit{D. Swartz} and \textit{N. K. Yip}, Commun. Partial Differ. Equations 42, No. 10, 1598--1643 (2017; Zbl 1387.35389) Full Text: DOI arXiv
Gao, Laiyuan; Zhang, Yuntao Evolving convex surfaces to constant width ones. (English) Zbl 1378.53074 Int. J. Math. 28, No. 11, Article ID 1750082, 18 p. (2017). MSC: 53C44 35K55 53A07 PDF BibTeX XML Cite \textit{L. Gao} and \textit{Y. Zhang}, Int. J. Math. 28, No. 11, Article ID 1750082, 18 p. (2017; Zbl 1378.53074) Full Text: DOI
Berlyand, Leonid; Potomkin, Mykhailo; Rybalko, Volodymyr Sharp interface limit in a phase field model of cell motility. (English) Zbl 1379.35331 Netw. Heterog. Media 12, No. 4, 551-590 (2017). MSC: 35Q92 35K51 35B25 35C07 92C37 PDF BibTeX XML Cite \textit{L. Berlyand} et al., Netw. Heterog. Media 12, No. 4, 551--590 (2017; Zbl 1379.35331) Full Text: DOI arXiv
Baker, Charles; Nguyen, Huy The Codimension two surfaces pinched by normal curvature evolving by mean curvature flow. (English) Zbl 1377.53084 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 6, 1599-1610 (2017). MSC: 53C44 53A07 PDF BibTeX XML Cite \textit{C. Baker} and \textit{H. T. Nguyen}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 6, 1599--1610 (2017; Zbl 1377.53084) Full Text: DOI
Wheeler, Valentina-Mira Mean curvature flow with free boundary in embedded cylinders or cones and uniqueness results for minimal hypersurfaces. (English) Zbl 1386.53085 Geom. Dedicata 190, 157-183 (2017). Reviewer: Alina Stancu (Montréal) MSC: 53C44 53C42 58J35 PDF BibTeX XML Cite \textit{V.-M. Wheeler}, Geom. Dedicata 190, 157--183 (2017; Zbl 1386.53085) Full Text: DOI arXiv
Tasayco, Ditter; Zhou, Detang Uniqueness of grim hyperplanes for mean curvature flows. (English) Zbl 1394.53048 Arch. Math. 109, No. 2, 191-200 (2017). Reviewer: Pascual Lucas Saorín (Murcia) MSC: 53C21 53C44 PDF BibTeX XML Cite \textit{D. Tasayco} and \textit{D. Zhou}, Arch. Math. 109, No. 2, 191--200 (2017; Zbl 1394.53048) Full Text: DOI arXiv