zbMATH — the first resource for mathematics

Continuity of metric projection. (English. Russian original) Zbl 0586.41026
Math. Notes 37, 114-119 (1985); translation from Mat. Zametki 37, No. 2, 200-211 (1985).
Continuing his previous investigation, the author gives new geometric characterizations of the continuity of the metric projection \(P_ M\), for all M in a given class \({\mathfrak M}\) of subsets of a Banach space X (for example, \({\mathfrak M}\) may be the class of all weakly compact convex subsets of X, the class of all boundedly weakly compact convex subsets of X, etc.). The main result of the paper is Theorem 2: For a Banach space X the following conditions are equivalent: 1) \(X\in (A_{\partial})\cap (RBR)\); 2) \(P_ M\) is Hausdorff continuous, \(M\in {\mathfrak M}\); 3) \(P_ M\) is Hausdorff lower semicontinuous, \(M\in {\mathfrak M}\); 4) \(P_ M\) is lower semicontinuous, \(M\in {\mathfrak M}\). Condition 1) is given in terms involving faces of the unit sphere S of X and weak and norm convergence of sequences in S.
Reviewer: S.Cobzaş

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
46B20 Geometry and structure of normed linear spaces
Full Text: DOI
[1] M. M. Day, Normed Linear Spaces, Springer-Verlag (1973). · Zbl 0268.46013
[2] K. Fan and J. Glicksberg, ?Some geometric properties of the spheres in a normed linear space,? Duke Math. J.,25, No. 4, 553-568 (1958). · Zbl 0084.33101 · doi:10.1215/S0012-7094-58-02550-X
[3] I. Singer, ?Some remarks on approximative compactness,? Rev. Roum. Math. Pures Appl.,9, No. 2, 167-177 (1964). · Zbl 0166.39405
[4] E. V. Oshman, ?Continuity of metric projection in a Banach space,? Mat. Sb.,80, No. 2, 181-194 (1969).
[5] E. V. Oshman and V. V. Nevesenko, ?Continuity of multivalued metric projection in normed linear spaces,? Dokl. Akad. Nauk SSSR,223, No. 5, 1064-1066 (1975).
[6] R. E. Edwards, Functional Analysis [Russian translation], Mir, Moscow (1969). · Zbl 0189.12103
[7] N. Dunford and J. T. Schwartz, Linear Operators, Pt. 1, Wiley (1958).
[8] L. P. Vlasov, ?Approximative properties of sets in normed linear spaces,? Usp. Mat. Nauk,28, No. 6, 3-66 (1973). · Zbl 0293.41031
[9] F. Deutsch, W. Pollul, and I. Singer, ?On set-valued metric projections, Hahn-Banach extension maps, and spherical image maps,? Duke Math. J.,40, No. 2, 355-370 (1973). · Zbl 0267.41013 · doi:10.1215/S0012-7094-73-04029-5
[10] N. V. Efimov and S. B. Stechkin, ?Approximative compactness and Chebyshev sets,? Dokl. Akad. Nauk SSSR,140, No. 3, 522-524 (1961). · Zbl 0103.08101
[11] W. W. Breckner, ?Bemerkungen uber die Existenz von Minimallosungen in normierten linearen Räumen,? Mathematica (Cluj),10, No. 2, 223-228 (1968). · Zbl 0175.13303
[12] L. P. Vlasov, ?Concept of approximative compactness and its variants,? Mat. Zametki,16, No. 2, 337-348 (1974).
[13] B. Brosowski and F. Deutsch, ?Radial continuity of set-valued metric projections,? J. Approx. Theory,11, No. 3, 236-253 (1974). · Zbl 0283.41014 · doi:10.1016/0021-9045(74)90016-1
[14] L. P. Vlasov, ?Continuity of metric projection,? Mat. Zametki,30, No. 6, 813-818 (1981). · Zbl 0505.41023
[15] N. V. Nevesenko and E. V. Oshman, ?Metric projection to convex sets,? Mat. Zametki,31, No. 1, 117-126 (1982). · Zbl 0578.41038
[16] N. V. Nevesenko, ??-continuity of metric projection to convex closed sets,? Mat. Zametki,23, No. 6, 845-854 (1978).
[17] N. V. Nevesenko, ?Metric projection and approximative properties of sets in normed linear spaces,? Candidate’s Dissertation, Ural State Univ., Sverdlovsk, 1978. · Zbl 0408.41019
[18] V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Incorrect Linear Problems and Its Application [in Russian], Nauka, Moscow (1978). · Zbl 0489.65035
[19] S. V. Konyagin, ?Approximative properties of closed sets in Banach spaces and characterization of strongly convex spaces,? Dokl. Akad. Nauk SSSR,251, No. 2, 276-280 (1980). · Zbl 0458.41027
[20] E. V. Oshman, ?Continuity of metric projection to convex closed sets,? Dokl. Akad. Nauk SSSR,269, No. 2, 289-291 (1983). · Zbl 0531.41029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.