zbMATH — the first resource for mathematics

Generalized implicit function theorems and problems with a free boundary. (English) Zbl 0860.35001
The content of the present work is as follows: In Sec. 1.1 the properties of superposition operators on Hölder classes are considered. Information on the derivatives along vector fields is presented in Sec. 1.2. Questions concerning perturbations of boundary value problems are considered in Sec. 1.3. The results of this section play a central role in the verification of assumptions of the generalized implicit function theorems. In Sec. 1.4 the parametrization of doubly-connected domains by functions defined on a definite manifold are considered.
Local and global generalized implicit function theorems are presented in Chapter 2. In Sec. 2.1. the local existence, uniqueness and differentiability of the implicit function are considered. In Sec. 2.2 global variants of the generalized implicit function theorems are presented.
In Chapter 3 and 4 classical problems are considered in view of the results of Chapter 1 and 2. Here we have conditions of global stability of these problems in Hölder classes together with data-dependence results in the dimension \(n\geq 2\). Finally, Chapter 4 is devoted to problems with Bernoulli’s conditions on a free boundary.
35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
26B10 Implicit function theorems, Jacobians, transformations with several variables
35R35 Free boundary problems for PDEs
35B20 Perturbations in context of PDEs
49-02 Research exposition (monographs, survey articles) pertaining to calculus of variations and optimal control
Full Text: DOI
[1] A. Acker, ”A free boundary optimization problem,”SIAM J. Math. Anal.,9, 1179–1191 (1978). · Zbl 0392.31002 · doi:10.1137/0509095
[2] A. Acker, ”A free boundary optimization problem,”SIAM J. Math. Anal.,11, 201–209 (1980). · Zbl 0442.31002 · doi:10.1137/0511018
[3] A. Acker, ”An extremal problem involving current flow through distributed resistance,”SIAM J. Math. Anal.,12, 169–172 (1981). · Zbl 0456.49007 · doi:10.1137/0512017
[4] A. Acker, ”Interior free boundary problems for the Laplace equations,”Arch. Ration. Mech. Anal.,75, 157–168 (1981). · Zbl 0446.76019 · doi:10.1007/BF00250477
[5] A. Acker, ”On the convexity of equilibrium plasma configurations,”Math. Meth. Appl.,3, 435–443 (1981). · Zbl 0459.76091 · doi:10.1002/mma.1670030130
[6] A. A. Agrachev and R. V. Gamkrelidze, ”The exponential representation of flows and chronological calculus,”Mat. Sb.,107, 467–532 (1978). · Zbl 0408.34044
[7] A. A. Arkhipova, ”On the limit smoothness of the solution of the problem with two-sided obstacle,”Vestn. LGU, No. 7, 5–9 (1984). · Zbl 0542.49004
[8] A. A. Arkhipova, ”Regularity of solutions of a diagonal elliptic system of variational inequalities,” in:Problems of Mathematical Analysis, Vol. 10,LGU, Leningrad (1986), pp. 3–16. · Zbl 0689.49009
[9] A. A. Arkhipova, ”On the regularity of solutions of the obstacle problem for strictly elliptic operaters,” in:Some Applications of Functional Analysis to the Problems of Mathematical Physics, IMSO, Novosibirsk (1988), pp. 2–20.
[10] A. A. Arkhipova and N. N. Ural’tzeva, ”On the regularity of solutions of the problem with two-sided conditions on the boundary,”Vestn. LGU, Ser. 1, No. 1, 3–10 (1986).
[11] A. A. Arkhipova and N. N. Ural’tzeva, ”The regularity of solutions of diagonal elliptic systems under convex conditions on the domain boundary. Boundary value problems for function theory.”Zap. Nauch. Sem. LOMI,152, No. 18, 5–17 (1986).
[12] I. V. Arnold, ”Small divisor and stability problems in classical celestial mechanics,”Uspekhi Mat. Nauk,18, No. 6, 81–192 (1963).
[13] I. V. Arnold, ”A proof of the A. N. Kolmogoroff’s theorem on preservation of quasi-periodic motions under small perturbations of the Hamiltonian,”Uspekhi Mat. Nauk,18, No. 5, 33–40 (1963).
[14] C. Baiocchi, ”Problems a frontier libre et inequations varitionelles,”C. R. Acad. Sci., Ser. A,283, 29–32 (1976). · Zbl 0342.35055
[15] C. Baiocchi, V. Cominciolli, E. Margenese, and G. Rozzi, ”Free boundary problems in the theory of fluids through porous media: existence and uniqueness theorems,”Ann. Mat. Pura Appl.,97, 9–82 (1973).
[16] P. K. Banerjee and R. Batterfield,Boundary Element Methods in Engineneering Science, McGraw-Hill, London-New York (1981).
[17] N. V. Banichuk, ”Optimization of elastic bars in torsion,”Int. J. Solids Structures,12, 275–286 (1976). · Zbl 0319.73029 · doi:10.1016/0020-7683(76)90077-9
[18] N. V. Banichuk,Shape Optimization of Elastic Bodies [in Russian], Nauka, Moscow (1980). · Zbl 0649.73040
[19] N. V. Banichuk,An Introduction to Structure Optimization [in Russian], Nauka, Moscow (1986).
[20] N. V. Banichuk, V. G. Bel’sky, and V. V. Kobelev, ”Optimization in elasticity theory with unknown boundaries,”Mech. Solids, No. 3, 46–52 (1984).
[21] N. V. Banichuk, V. G. Bel’sky, and V. V. Kobelev,Problems with Unknown Boundaries in Optimal Design [in Russian], Preprint No. 246, IPM Academy Nauk SSSR, Moscow (1985).
[22] N. V. Banichuk, V. V. Kobelev, and A. I. Meshchriakov, ”An application of the boundary integral equation method to optimal design problems,”Prikl. Probl. Proch. Plast., No. 45, 10–15 (1990).
[23] J. T. Beale, ”The existence of solitary water waves,”Comm. Pure Appl. Math.,30, 373–389 (1977). · Zbl 0379.35055 · doi:10.1002/cpa.3160300402
[24] J. T. Beale, ”The existence of choidal water wave with surface tension,”J. Diff. Equat.,31, 230–263 (1979). · Zbl 0392.76019 · doi:10.1016/0022-0396(79)90146-3
[25] S. Bergman and M. Schiffer,Kernel Functions in Mathematical Physics, Academic Press, New York (1953). · Zbl 0053.39003
[26] J. A. Bennet and M. E. Botkin (eds.),The Optimum Shape: Automated Structural Design, Plenum Press, New York (1986).
[27] L. Bers, F. John, and M. Schechter,Partial Differential Equations, Interscience (1964). · Zbl 0126.00207
[28] A. Beurling, ”Free boundary problems for the Laplace equation,” in:Inst. Advanced Study, Seminar, I, Princeton, NJ (1957), pp. 248–263.
[29] G. Birkhoff and E. H. Zarantanello,Jets, Wakes and Cavities, Academic Press, New York (1957). · Zbl 0077.18703
[30] A. Bogomolny and J. W. How, ”Shape optimization approach to numerical solution of the obstacle problem,”Appl. Math. Opt.,12, 45–72 (1974). · Zbl 0555.49020 · doi:10.1007/BF01449033
[31] H. Brezis and G. Duvaut, ”Ecoulement avec ou sans sillage autour d’un profil symmetric,”C. R. Acad. Sci., Ser. A,276, 875–878 (1973). · Zbl 0266.76004
[32] M. A. Brutain and S. V. Liapunov, ”On the second variation of a Riaboushinsky functional,”Dokl. Akad. Nauk SSSR,258, 812–814 (1981).
[33] G. Buttazzo and Dal G. Maso, ”Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions,”Bull. Am. Math. Soc.,23, No. 2, 531–535 (1990). · Zbl 0718.49017 · doi:10.1090/S0273-0979-1990-15971-3
[34] G. Buttazzo and Dal G. Maso, ”Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions,”Appl. Math. Opt.,23, 17–49 (1991). · Zbl 0762.49017 · doi:10.1007/BF01442391
[35] L. A. Caffarelli, ”The regularity of the free boundaries in higher dimension,”Acta Math.,139, 155–184 (1977). · Zbl 0386.35046 · doi:10.1007/BF02392236
[36] L. A. Caffarelli, ”Further regularity for the Signorini problem,”Commun. Part. Diff. Eq.,4, 1067–1076 (1979). · Zbl 0427.35019 · doi:10.1080/03605307908820119
[37] L. A. Caffarelli, ”A remark on the Hausdorff measure of a free boundary and the convergence of coincidence sets,”Boll. Unione Math. Ital.,18, 1297–1299 (1981). · Zbl 0453.35085
[38] L. A. Caffarelli, ”The regularity of elliptic and parabolic free boundaries,”Bull. Am. Math. Soc.,82, No. 4, 616–618 (1976). · Zbl 0357.35011 · doi:10.1090/S0002-9904-1976-14138-9
[39] L. A. Caffarelli and N. M. Riviere, ”On the rectifiability of domains with finite perimeter,”Ann. Sc. Norm. Super., Pisa, Cl. Sci.,3, 177–186 (1976). · Zbl 0362.49031
[40] L. A. Caffarelli and N. M. Riviere, ”Smoothness and analyticity of free boundaries in variational inequalities,”Ann. Sc. Norm. Super. Pisa, Cl. Sci.,3, 289–310 (1976). · Zbl 0363.35009
[41] L. A. Caffarelli and N. M. Riviere, ”Asymptotic behavior of free boundaries at their singular points,”Ann. Math.,106, 309–317 (1976). · Zbl 0364.35041 · doi:10.2307/1971098
[42] K. C. Chan, ”Discretized solutions for the solitary waves,”J. Comput. Phys.,16, 32–48 (1974). · Zbl 0284.76016 · doi:10.1016/0021-9991(74)90102-8
[43] T. Carleman,Uber ein Minimization der mathematischen Physik, Vol. 1, 208–212 (1918). · JFM 46.0765.02
[44] J. Cea, ”Problems of shape optimal design,” in:Optimization of Distributed Parameter Structures, Vol. 2, Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands (1981), pp. 1005–1048.
[45] J. Cea, ”Numerical methods of shape optimal design,” in:Optimization of Distributed Parameter Structures, Vol. 2, Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands (1981), pp. 1048–1087.
[46] J. Cea, ”Conception optimale ou identificatoin de forms: calcul rapid de la derivee directionelle de la fonction cout,”Math. Model. Numer. Anal.,20, 371–402 (1986). · Zbl 0604.49003
[47] J. Cea and Haug (eds.),Optimization of Distributed Parameter Structures, Vol. I, II, Sijthoff and Hoordoff (1981).
[48] D. Chenais, ”On the existence of solutions in a domain identification problem,”J. Math. Anal. and Appl.,52, No. 2, 189–319 (1975). · Zbl 0317.49005 · doi:10.1016/0022-247X(75)90091-8
[49] D. Chenais,Identification d’ouverts lipschitzien et de varietes a bord lipschitziennes dan des equations aux derivees partielles, Thesis, Univ. of Nice (1977).
[50] J. H. Choi and V. M. Kwak, ”Boundary integral equation method for shape design sensitivity analysis,”Compt. Aid. Opt. Design.,2, 186–214 (1986).
[51] G. Cimatti, ”The plane stress problem of Chizzetti in elastoplasticity,”Appl. Math. Optimiz.,3, No. 1, 213–226 (1976).
[52] C. W. Cryer, ”On the approximate solution of free boundary problems using finite differences,”J. Assoc. Comp. Mach.,17, 397–411 (1970). · Zbl 0217.21903
[53] G. Dal Maso, ”G-convergence and \(\mu\)-capacities,”Ann. Sc. Norm. Super., Pisa, Cl. Sci.,14, 423–464 (1987).
[54] I. I. Danilyuk, ”Existence theorem for a non-linear free boundary problem,”Ukr. Mat. Zh.,20, No. 1, 2–29 (1968).
[55] I. I. Danilyuk, ”Study of a class of functional defined by integrals with variable domain,”Dokl. Akad. Nauk SSSR, Ser. A, No. 9, 783 (1969). · Zbl 0179.16102
[56] I. I. Danilyuk, ”Sur une classe de fonctionelles integrales a domaine variable d’integration,” in:Actes du Congres International de Math.,2, Nice (1970), pp. 703–715.
[57] I. I. Danilyuk,On the Integral Functionals with Variable Domain of Integration, Tr. Mat. In-ta Akad. Nauk USSR (1972). · Zbl 0239.76026
[58] M. C. Delfour, ”Shape analysis and optimization in distributed systems,” in:Proc. 5th IFAC Symp. Contr. Distributed Parameter Syst., Perpinan, France (1989), pp. 43–51.
[59] M. C. Delfour and J. P. Zolesio, ”Derivation d’un minmax et application a la derivation par rapport au control d’un observation non-differentiable de l’eta,”C. R. Acad. Sci. Ser. 1,302, No. 16, 571–574 (1986).
[60] I. C. Delfour and J. P. Zolesio, ”Shape sensitivity analylise via minmax differentiability,”SIAM J. Contr. Opt.,26, 834–862 (1988). · Zbl 0654.49010 · doi:10.1137/0326048
[61] M. C. Delfour and J. P. Zolesio, ”Differentiability of a minmax and application to control and design problems, Part 1,” in:Control Problems for Systems Described as Partial Differentiable Equations and applications, Springer-Verlag, New-York (1987), pp. 204–219.
[62] M. C. Delfour and J. P. Zolesio, ”Differentiability of a minmax and application to control and design problems, Part 2,” in:Control Problems for Systems Described as Partial Differentiable Equations and Applications, Spinger-Verlag, New-York (1987), pp. 220–229.
[63] M. C. Delfour and J. P. Zolesio, ”Further developments in shape sensitivity analysis via a penalization method,” in:Boundary Control and Boundary Variations. Spinger-Verlag, Berlin-Heidelberg-New-York (1988), pp. 153–191. · Zbl 0667.49005
[64] M. C. Delfour and J. P. Zolesio, ”Shape sensitivity analysis via penalization method,”Ann. Mat. Pura Appl.,151, 179–212 (1988). · Zbl 0667.49004 · doi:10.1007/BF01762794
[65] M. C. Delfour and J. P. Zolesio, ”Analyse des problemes de forme par la derivation des MinMax,” in:Analise non lineare, Guathier-Villars, Paris (1989), pp. 211–228.
[66] M. C. Delfour and J. P. Zolesio, ”Anatomy of the shape Hessian,”Ann. Math. Pura Appl.,149, 315–339 (1991). · Zbl 0770.49025
[67] M. C. Delfour and J. P. Zolesio, ”Velocity method and Lagrangian formulation for the computation of the shape Hessian,”SIAM J. Contr. Opt.,29, No. 6, 1414–1442 (1991). · Zbl 0747.49007 · doi:10.1137/0329072
[68] A. S. Demidov, ”Equilibrium form of a steady plasma,”Phys. Fluids,21, No. 6, 902–904 (1978). · Zbl 0378.76092 · doi:10.1063/1.862331
[69] K. Dems and D. Mroz, ”Variational approach by means of adjoint systems to structural optimization and sensitivity analysis. Part 2: Structure shape variations,”Int. J. Solid Structures,20, 527–552 (1984). · Zbl 0577.73093 · doi:10.1016/0020-7683(84)90026-X
[70] A. Dervieux,Perturbation des equations d’equilebre d’un plasma confine: comportement de la frontiere libre, etude de branches de solution, INRIA, Report No. 18 (1980).
[71] A. Dervieux, ”A perturbation study of the obstacle problem by means of a generalized implicit function theorem,”Ann. Mat. Pura Appl. (IV),128, 321–364 (1981). · Zbl 0472.35081 · doi:10.1007/BF01811729
[72] A. Dervieux, ”A perturbation study of a jet-like annular free boundary problem and an application to an optimal control problem,”Comm. Part. Differ. Eq.,6, No. 2, 197–247 (1981). · Zbl 0457.35035 · doi:10.1080/03605308108820175
[73] A. Dervieur and H. Kawarada, ”Free boundary problems for the Laplace equation: a priori estimates, existence theorems, asymptotic behaviours,”Math. Meth. Appl. Sci.,3, 38–69 (1981). · Zbl 0453.35038 · doi:10.1002/mma.1670030105
[74] A. Domarkus, ”One-sided problems for quasilinear elliptic equations,”Lit. Mat. Zb.,1, No. 4, 83–96 (1981).
[75] G. Duvaut and J. L. Lions,Les Inequations en Mecanic et en Physique, Dunod, Paris (1972). · Zbl 0298.73001
[76] R. Fimi, ”Some theorems on discontinuty of plane fluid motion,”J. Anal. Math.,4, 246–291 (1954). · Zbl 0073.41502 · doi:10.1007/BF02787724
[77] A. Friedman,Variational Principles and Free Boundary Problems, John Willey and Sons, New York (1982). · Zbl 0564.49002
[78] N. Fujii, ”Domain optimization problems with a boundary value problems as a constraint,” in:Control of Distributed Parameter Systems, Proc. 4th IFAC Symp., Los Angeles, Calif., 1986, Pergamon Press, Oxford-New-York (1986), pp. 5–9.
[79] N. Fujii, ”Lower semicontinuity in domain optimization problems,”J. Opt. Theory Appl.,58, 407–421 (1988). · Zbl 0629.49006 · doi:10.1007/BF00940307
[80] N. Fujii, ”Domain optimization problems with a boundary value problem as a constraint,” in:Control of Distributed Parameter Systems, Los Angeles, California (1986). · Zbl 0587.49023
[81] N. Fujii, ”Second-order necessary conditions in a domain optimization problem,”J. Opt. Theory Appl.,65, 223–244 (1990). · Zbl 0675.49021 · doi:10.1007/BF01102343
[82] N. Fujii, ”Necessary conditions for a domain optimization problem in elliptic boundary-valued problems,”SIAM J. Contr. Opt.,24, 346–360 (1986). · Zbl 0587.49023 · doi:10.1137/0324020
[83] P. R. Garaberdian, ”Calculation of axially symmetric cavities and jets,”Pacific J. Math.,6, 611–684 (1956). · Zbl 0072.20301
[84] P. R. Garaberdian, ”The mathematical theory of three dimensional cavities and jets,”Bull. Am. Math. Soc.,62, 219–235 (1956). · Zbl 0074.41502 · doi:10.1090/S0002-9904-1956-10017-7
[85] P. R. Garaberdian, H. Lewy, and M. Schiffer, ”Axially symmetric cavitational flow,”Ann. Math.,56, 360–602 (1952). · Zbl 0047.18203
[86] P. N. Garaberdian and M. Schiffer, ”Variational problems in the theory of elliptic partial differential equations,”J. Rat. Mech. Anal.,2, 137–171 (1953). · Zbl 0050.10002
[87] P. N. Garaberdian and M. Schiffer, ”Convexity of domain functionals,”J. d’Analyse Math.,3, 246–334 (1953).
[88] P. N. Garaberdian and D. C. Spencer, ”Extremal methods in cavitational flow,”J. Rat. Mech. Anal.,1, 359–409 (1952). · Zbl 0046.18504
[89] D. Gilbarg, ”Uniqueness of axially symmetric flows with free boundaries,”J. Rat. Mech. Anal.,1, 309–320 (1952). · Zbl 0049.41603
[90] D. Gilbarg,Jets and Cavities, Springer-Verlag, New York (1960). · Zbl 1339.76003
[91] D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New-York-Tokyo (1983). · Zbl 0562.35001
[92] R. Glowinski, J. P. Lions, and R. Tremolieres,Analyse Numerique des Inequations des Variationalles, Dunod, Paris (1976). · Zbl 0358.65091
[93] Y. Goto and N. Fujii, ”Second order numerical method for domain optimization problems,”J. Opt. Theory Appl.,67, No. 3, 533–550 (1990). · Zbl 0697.49032 · doi:10.1007/BF00939648
[94] Y. Goto and N. Fujii, ”A Newton’s method in a domain optimization problem,” in:Control of Boundary and Stabilization. Springer-Verlag, New York (1989), pp. 109–127.
[95] Y. Goto, N. Fujii, and Y. Muramatsu, ”Second-order necessary optimality conditions for domain optimization problems of the Neumann type,”J. Opt. Theory Appl.,65, 431–445 (1990). · Zbl 0676.49023 · doi:10.1007/BF00939560
[96] R. E. Greene and H. Jacobowitz, ”Analytic isometric embeddings,”Ann. Math.,93, 189–204 (1971). · Zbl 0204.54903 · doi:10.2307/1970760
[97] A. Grigalenis, ”On the conditional extremum in the problems with free boundaries,” in:Differential Equations and Its Applications, Vol. 38, Vilnius, IMK AN Lit.SSR (1978), pp. 15–22.
[98] A. Grigalenis, ”On the necessary conditions of extremum in the variational problems with free boundaries,”Lit. Mat. Sb.,27, No. 1, 38–47 (1978).
[99] M. I. Gurevich,The Theory of Ideal Fluid Jets [in Russian], Fizmatgiz, Moscow (1961). · Zbl 0124.39401
[100] J. Haslinger and P. Neittanmaki,Optimal shape design problems. Theory and Applications, John Wiley and Sons, Chichester (1988).
[101] J. Haslinger and P. Neittanmaki, ”On the design of the optimal covering of an obstacle.”Lect. Notes Contr. Inf. Sci.,100, 153–191 (1987).
[102] J. Haslinger and P. Neittanmaki, ”On the existence of optimal shapes in contact problems,”Comput. Mech.,1, 293–299 (1986). · Zbl 0607.73106
[103] E. J. Hang and B. Rousselet, ”Design sensitivity analysis in structural mechanics, I: Static response variations,”J. Struct. Mech.,8, 17–41 (1980).
[104] E. J. Hang and B. Rousselet, ”Design sensitivity analysis in structural mechanics, II: Eigenvalue variations,”J. Struct. Mech.,8, 161–186 (1980).
[105] W. K. Hayman and P. B. Kennedy,Subharmonic functions, Vol. 1, Academic Press, London-New York-San Francisco (1976). · Zbl 0419.31001
[106] L. Hormander, ”The boundary problems of physical geodesy,”Arch. Ration. Mech. Anal.,62, No. 1, 1–89 (1976). · Zbl 0331.35020 · doi:10.1007/BF00251855
[107] V. P. Il’in,Numerical methods for electricity problems [in Russian], Nauka, Moscow (1985).
[108] V. M. Isakov, ”Inverse theorems connected with regularity of potentials,”Differents. Uravn.,11, 50–56 (1975). · Zbl 0328.31010
[109] V. M. Isakov, ”The analyticity of solutions of nonlinear transport problems,”Differents. Uravn.,12, 41–47 (1976). · Zbl 0343.35035
[110] H. Jacobowitz, ”Implicit function theorems and isometric embeddings,”Ann. Math.,95, 189–204 (1972). · Zbl 0231.46068 · doi:10.2307/1970796
[111] D. D. Joseph, ”Parameter and domain dependence of eigenvalues of elliptic partial differential equations,”Arch. Ration. Mech. Anal.,35, 169–177 (1977).
[112] A. K. Kerimov, ”Sufficient conditions for the optimality in an extremal problem with free boundary,”Tr. Mat. In-ta Akad. Nauk SSSR,2 (1990).
[113] A. K. Kerimov, ”On the dependence of solutions of boundary value problems on perturbations of the domain by vector fields,”Mat. Sb.,69, No. 2 (1991). · Zbl 0724.35013
[114] N. Kikuchi, K. W. Chung, T. Torigaki, and J. E. Taylor, ”Adaptive finite-element method for shape optimization of linear elastic structures,” in:Optimal Shape, Plenum, New York (1986), pp. 135–169. · Zbl 0578.73081
[115] D. Kinderlehrer, ”The coincidence set of solutions of certain variational inequalities,”Arch. Ration. Mech. Anal.,40, 231–250 (1971). · Zbl 0219.49014 · doi:10.1007/BF00281484
[116] D. Kinderlehrer, ”How a minimal surface leaves an obstacle,”Acta Math.,130, 221–242 (1973). · Zbl 0268.49050 · doi:10.1007/BF02392266
[117] D. Kinderlehrer, ”The free boundary determined by the solution to a differential equation,”Indiana Univ. Math. J.,25, 195–208 (1976). · Zbl 0336.35031 · doi:10.1512/iumj.1976.25.25016
[118] D. Kinderlehrer and L. Nirenberg, ”Regularity in free boundary value problems,”Ann Sc. Norm. Super. Risa, Cl. Sci.,4, No. 4, 373–391 (1977). · Zbl 0352.35023
[119] D. Kinderlehrer and G. Stampacchia,An Introduction to Variational Inequalities and Their Applications, Academic Press, New York-London-Toronto-Sydney-San Francisco (1980). · Zbl 0457.35001
[120] A. N. Kolmogorov, ”On the dynamical systems with integral invariants on torus,”Dokl. Akad. Nauk SSSR,93, No. 5, 163–166 (1953).
[121] A. N. Kolmogorov, ”General theory of dynamical systems and classical mechanics,” in:Proc. of Int. Congress of Math., Amsterdam, 1954, Erven P. Nordhoff, Akad., Vol. 1, Amsterdam (1957), pp. 315–333.
[122] R. V. Kohn and G. Streng, ”Optimal design and relaxation of variational problems, I, II, III,”Comm. Pure Appl. Math.,39, 133–137, 139–182, 353–377 (1986).
[123] R. V. Kohn and M. Vogelius, ”Relaxation of a variational method for impedance computed tomography,”Comm. Pure Appl. Math.,40, 745–777 (1987). · Zbl 0659.49009 · doi:10.1002/cpa.3160400605
[124] O. A. Ladyzhenskaya and N. N. Ural’tseva,Linear and Quasilinear Elliptic Equations [In Russian], Nauka, Moscow (1974).
[125] M. A. Lavrentiev, ”Some properties of multivalued functions and its application to wave theory,”Math. Sb.,46, 331–458 (1938).
[126] M. A. Lavrentiev, ”On some properties of simple functions with applications to jet theory,”Mat. Sb.,4, No. 3, 391–458 (1938).
[127] M. A. Lavrentiev, ”Variational Methods, Noordhoff, Groningen, Netherlands (1963).
[128] J. Leray, ”Les problems de representation conforme de Helmholtz, 1,2,”Commun. Math. Helv.,8, 250–263 (1935). · JFM 62.0978.01 · doi:10.1007/BF01199557
[129] H. Lewy, ”On the coincidence set in variational inequalities,”J. Diff. Geom.,6, 497–501 (1972). · Zbl 0255.31002
[130] H. Lewy and G. Stampacchia, ”On the regularity of the solution of a variational inequality,”Comm. Pure Appl. Math.,22, 153–188 (1989). · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[131] H. Lewy and G. Stampacchia, ”On the existence and smoothness of solutions of some noncoercive variational inequalities,”Arch. Ration. Mech. Anal.,41, 241–253 (1971). · Zbl 0237.49005 · doi:10.1007/BF00250528
[132] J. P. Ligari and W. H. Warner, ”Domain dependence of eigenvalues of vibrating plates,”SIAM J. Appl. Math.,24, 383–395 (1973). · Zbl 0255.73070 · doi:10.1137/0124040
[133] J. P. Lions and G. Stampacchia, ”Variational inequalities,”Comm. Pure Appl. Math.,20, 493–519 (1967). · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[134] J. P. Lions, ”Some methods of resolution of free surface problems,” in:Lect. Notes Phys.,59, 1–31 (1976). · Zbl 0387.76008
[135] Martensen,Potential Theorie, Teubner-Verlag, Stuttgart (1968).
[136] T. Masanao and N. Fujii, ”Second-order necessary conditions for domain optimization problems in elastic structures. Parts 1, 2. Surface traction given as a field,”J. Opt. Theory Appl.,72, No. 2, 355–382, 383–401 (1992). · Zbl 0794.73048 · doi:10.1007/BF00940523
[137] H. Q. Liu and R. W. Xia, ”First and second order sensitivity analysis of shape optimization based on variational method,” in:Approximation, Optimization and Computing: Theory and Applications, Elsevier Science Publishers B. V., North-Holland (1990). · Zbl 0939.49509
[138] A. M. Micheletti, ”Metrica per famiglie di domini limitati et proprieta generiche degli autovalori,”Ann. Sc. Norm. Super. Pisa, Cl. Sci.,26, 684–694 (1972). · Zbl 0255.35028
[139] C. Miranda,Equazioni alle Derivate Parziali di Tipo Elliptico, Springer-Verlag (1955).
[140] V. N. Monakhov,Free Boundary Problems for Elliptic Systems of Equations [in Russian], Nauka, Moscow (1977). · Zbl 0532.35002
[141] J. Moser, ”A new technique for the construction of solutions of nonlinear differential equations,”Proc. Natl. Acad. Sci.,47, 1824–1831 (1961). · Zbl 0104.30503 · doi:10.1073/pnas.47.11.1824
[142] J. Moser, ”A rapidly convergent iteration method and nonlinear partial differential equations,”Ann. Sc. Norm. Super. Pisa, Cl. Sci.,20, 265–315, 499–533 (1966). · Zbl 0144.18202
[143] C. A. Mota Soares, H. C. Rodrigues, L. M. Oliveira Faria, and E.G. Houg, ”Optimization of the shape solids and hollow shells using boundary elements,” in:Boundary Elements, Springer-Verlag, Berlin (1983), pp. 883–889.
[144] C. A. Mota Soares and K. K. Choi, ”Boundary elements in shape optimal design of structures,” in:Int. Symp. on the Optimal Design (1985), pp. 145–185.
[145] F. Murat, ”Control in coefficients,” in:Encyclopedia of Systems and Control, Pergamon Press, Oxford (1983), pp. 808–812.
[146] F. Murat and J. Simon, ”Studies on optimal shape design problems,”Lect. Notes Comput. Sci.,41 (1976). · Zbl 0334.49013
[147] F. Murat and J. Simon, ”Une formule de Hadamard dans des problemes d’optimal design,”Lect. Notes Comput. Sci.,41, (1976).
[148] F. Murat and L. Tartar, ”Optimality conditions and homogenization. Nonlinear Variational Problems,”Res. Notes Math.,127, 1–8 (1985). · Zbl 0569.49015
[149] L. A. Muravei, ”On the existence of solutions of variational problems with free boundaries,”Dokl. Akad. Nauk USSR,278, No. 4, 541–544 (1974).
[150] J. Nash, ”The embedding problem for Riemannian manifolds,”Ann. Math.,63, 20–63 (1956). · Zbl 0070.38603 · doi:10.2307/1969989
[151] P. Neittanmaki, ”On the optimal shape design,” in:Proc. 3rd European Conference on Mathematics in Industry (1990), pp. 453–459.
[152] L. Nirenberg, ”An abstract form of the nonlinear Cauchy-Kovalevski theorem,”J. Diff. Geom.,6, 561–576 (1972). · Zbl 0257.35001
[153] L. Nirenberg,Topics in Nonlinear Functional Analysis, New York (1974). · Zbl 0286.47037
[154] Yu. Osipov and A. P. Suetov, ”On J. P. Lions’ problem,”Dokl. Akad. Nauk SSSR,276, No. 2, 288–291 (1974).
[155] L. V. Ovsiannikov, ”Nonlinear Cauchy problem in the scale of Banach spaces,”Dokl. Akad. Nauk SSSR,200, No. 4, 789–792 (1971). · Zbl 0228.76020
[156] B. Palmerio and A. Derviuer, ”Une formule de Hadamard dan des problemes d’identification de domaines,”C. R. Acad. Sci., Ser. A,280, 1697–1700, 1761–1764 (1975). · Zbl 0303.35065
[157] B. Palmerio and A. Derviuer, ”Une formule de Hadamard dan des problemes d’optimal design,”Lect. Notes Comput. Sci.,41 (1976). · Zbl 0335.49014
[158] J. Pironneau,Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York (1984). · Zbl 0534.49001
[159] J. Pironneau, ”Optimal design with Lagrangian finite elements: design of an electromagnet,”Comp. Meth. Appl. Mech. Eng.,15, 207–308 (1978). · Zbl 0403.76001 · doi:10.1016/0045-7825(78)90024-5
[160] G. Polya, ”Torsial rigidity, principal frequency, electrostatic capacity, and symmetrization,”Quart. Appl. Math.,6, 267–277 (1947).
[161] J. P. Queau and P. Trompette, ”Two-dimensional shape optimal design by the finite-element method,”Int. J. Numer. Math. Eng.,15, 1603–1612 (1980). · Zbl 0439.73082 · doi:10.1002/nme.1620151104
[162] B. Rousselet, ”Shape design sensitivity of a membrane,”J. Opt. Theory Appl.,40, No. 4, 595–623 (1983). · Zbl 0497.73097 · doi:10.1007/BF00933973
[163] B. Rousselet, ”Dependence of eigenvalues with respect to shape,” in:Optimization of Distributed Parameter Structural Systems, Vol. 2, Sijthoff and Noordhoff, Alphen van den Rijn, Holland (1981) · Zbl 0516.73104
[164] N. N. Rozhkovskaya, ”On the regularity of solutions of the variational inequalities with gradient constraints,” in:Embedding Theorems and its Appliations. Proc. of Sobolev’s Seminar, IMSO Akad. Nauk SSSR, Novosibirsk (1981), pp. 78–85.
[165] N. N. Rozhkovskaya, ”One-sidedproblem for elliptic operators with convex gradient constraints. Part I,”Sib. Mat. Zh.,26, No. 3, 134–147 (1985).
[166] N. N. Rozhkovskaya, ”One-sided problem for elliptic operators with convex gradient constraints. Part II,”Sib. Mat. Zh.,26, No. 5, 150–158 (1985). · Zbl 0598.35049
[167] D. A. Schaeffer, ”The capacitior problem,”Indiana Univ. Math. J.,24, No. 2, 1143–1167 (1975). · Zbl 0311.35075 · doi:10.1512/iumj.1975.24.24095
[168] D. A. Schaeffer, ”A stability theorem for the obstacle,”Adv. Math.,17, 34–47 (1975). · Zbl 0317.49013 · doi:10.1016/0001-8708(75)90085-7
[169] D. A. Schaeffer, ”One-sided estimates for the curvature of the free boundary in the obstacle problem,”Adv. Math.,24, 78–98 (1977). · Zbl 0354.35075 · doi:10.1016/S0001-8708(77)80005-4
[170] D. A. Schaeffer, ”Some examples of singularities in a free boundary.” In:Ann. Sc. Norm. Super. Pisa, Cl. Sci. 1, 133–144 (1977). · Zbl 0354.35033
[171] M. Schiffer, ”Hadamard’s formula and variation of domain functions,”Am. J. Math.,68, 417–448 (1946). · Zbl 0060.23706 · doi:10.2307/2371824
[172] P. Schtern, E. Rudenchik, and A. Kerimov, ”Axisymmetrical potential flow appearing under normal incidence of jet on a flat wall,”Dokl. Akad. Nauk SSSR,317, 1085–1088 (1991).
[173] J. T. Schwartz, ”On Nash’s implicit functional theorem,”Comm. Pure Appl. Math.,13, 509–530 (1960). · Zbl 0178.51002 · doi:10.1002/cpa.3160130311
[174] J. T. Schwartz,Nonlinear Functional Analysis, Gordon and Breach, New York (1969).
[175] F. Sergeraert, ”Un theoreme de fonctions implicites sur certains espase de Frechet et quelques applications,”Ann. Sci. Ecole Norm. Sup., Ser. 4,5, 599–660 (1972). · Zbl 0246.58006
[176] J. Serrin, ”Existence theorems for some hydrodynamical free boundary problems,”Arch. Ration. Mech. Anal.,1, 1–48 (1952). · Zbl 0049.41502
[177] J. Serrin, ”Uniqueness theorems for two free boundary,”Am. J. Math.,74, 492–575 (1955). · Zbl 0049.41601 · doi:10.2307/2372011
[178] I. A. Shishmarev,An Introduction to Elliptic Equation Theory [in Russian], Moscow State University, Moscow (1979).
[179] A. P. Suetov, ”The Lions’s problem for systems described by the Neumann condition,”Differents. Uravn.,23, No. 3, 499–508 (1987).
[180] L. Tartar, ”Problemes de controle des coefficients des equations aux aux derivees partieles.”Lect. Notes Econ. Math. Syst.,107, 420–426 (1975).
[181] D. E. Tepper, ”Free boundary problem,”SIAM J. Math. Anal.,5, 841–846 (1974). · Zbl 0293.31004 · doi:10.1137/0505080
[182] D. E. Tepper, ”Free boundary problem–the starlike case,”SIAM J. Math. Anal.,6, 503–505 (1975). · Zbl 0299.31004 · doi:10.1137/0506045
[183] J. A. Torpe,Elementary Topics in Differential Geometry, Springer-Verlag, New York-Heidelberg-Berlin (1979).
[184] L. F. Treves, ”An abstract nonlinear Cauchy-Kovalevskaya theorem,”Trans. Am. Math. Soc.,150, 7–92 (1970). · Zbl 0199.15803 · doi:10.2307/1995483
[185] P. Trompette, J. L. Marcelin, and C. Lallemaud, ”Optimal Shape Design of Axisymmetrical Structures,” in:Optimal Shape, Plenum, New York (1986), pp. 283–295.
[186] E. O. Tuck, M. Bentwich, and J. Van der Hoek, ”The free boundary problem for gravity-driven unidirectional viscous flows,”IMA J. Appl. Math.,30, 191–208 (1983). · Zbl 0521.76037 · doi:10.1093/imamat/30.2.191
[187] N. N. Ural’tseva, ”The problem with one-sided condition on the boundary for quasi-linear ellipic equation,” in:Problems of Math. Anal., LGU, No. 6, (1982), pp. 172–189.
[188] N. N. Ural’tseva, ”On the strong solutions of generalized Signorini problem,”Sib. Mat. Zh.,19, No. 15, 1204–1212 (1978).
[189] N. N. Ural’tseva, ”Estimate on the boundary of domain for derivatives of solutions of variational inequalities,” in:Problems of Math. Anal., LGU, No. 10, 92–105 (1986).
[190] N. N. Ural’tseva, ”On the regularity of solutions of variational inequalities,”Uspekhi Mat. Nauk,42, No. 6, 151–174 (1987).
[191] S. V. Vallander,Lectures on Fluid and Gas Mechanics [in Russian], LGU, Leningrad (1978).
[192] M. A. Volkov, ”Numerical solution of the optimization problem with free boundary,”Vestn. MGU, Ser. 15, No. 3, 13–18 (1984).
[193] H. Williams, ”Nonlinear nonhomogeneous elliptic variational inequalities with a nonconstant gradient constraint,”J. Math. Pures Appl.,60, No. 2, 213–226 (1981). · Zbl 0467.49005
[194] A. Zochowski and K. A. Mizukami, ”Comparison of BEM and FEM in minimum weight design,” in:Proc. 5th Int. Conf. on BEM, Berlin, Springer-Verlag (1983), pp. 901–911. · Zbl 0512.73083
[195] J. P. Zolesio,Identification de Domaines par Deformation, These de doctorat-d’etat, Universite de Nice, France (1979).
[196] J. P. Zolesio, ”The material derivative (or speed) method for shape optimization,” in:Optimization of Distributed Parameter Structures, Vol. 2, Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands (1981), pp. 1089–1152. · Zbl 0517.73097
[197] J. P. Zolesio, ”Domain variational formulation for free boundary problems,” in:Optimization of Distributed Parameter Structures, Vol. 2, Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands (1981), pp. 1152–1194.
[198] J. P. Zolesio, ”Shape controllability for free boundaries”.Lect. Notes Contr. Inf. Sci.,59, 354–361 (1984). · doi:10.1007/BFb0008909
[199] E. Zehnder, ”An implicit function theorem for small diviser problems,”Bull. Am. Math. Soc.,80, No. 1, 174–179 (1974). · Zbl 0281.35002 · doi:10.1090/S0002-9904-1974-13407-5
[200] E. Zehnder, ”Generalized implicit function theorems with application to small divisor problem, I,”Comm. Pure Appl. Math.,28 No. 1, 91–140 (1975). · Zbl 0309.58006 · doi:10.1002/cpa.3160280104
[201] E. Zehnder, ”Generalized implicit function theorems with application to small divisor problem, II,”Comm. Pure Appl. Math.,29, No. 1, 49–111 (1976). · Zbl 0334.58009 · doi:10.1002/cpa.3160290104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.