Song, Guang-Jing; Yu, Shao-Wen Cramer’s rule for the general solution to a restricted system of quaternion matrix equations. (English) Zbl 1439.15006 Adv. Appl. Clifford Algebr. 29, No. 5, Paper No. 91, 17 p. (2019). Reviewer: Jaydeb Sarkar (Bangalore) MSC: 15A24 15A09 PDF BibTeX XML Cite \textit{G.-J. Song} and \textit{S.-W. Yu}, Adv. Appl. Clifford Algebr. 29, No. 5, Paper No. 91, 17 p. (2019; Zbl 1439.15006) Full Text: DOI
Song, Guangjing; Wang, Qingwen; Yu, Shaowen Cramer’s rule for a system of quaternion matrix equations with applications. (English) Zbl 1427.15019 Appl. Math. Comput. 336, 490-499 (2018). MSC: 15A24 15A09 PDF BibTeX XML Cite \textit{G. Song} et al., Appl. Math. Comput. 336, 490--499 (2018; Zbl 1427.15019) Full Text: DOI
Xu, Wei-Ru; Chen, Guo-Liang; Sheng, Xing-Ping Analytical best approximate Hermitian and generalized skew-Hamiltonian solution of matrix equation \(AXA^{\mathrm{H}}+CYC^{\mathrm{H}}=F\). (English) Zbl 1417.65125 Comput. Math. Appl. 75, No. 10, 3702-3718 (2018). MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{W.-R. Xu} et al., Comput. Math. Appl. 75, No. 10, 3702--3718 (2018; Zbl 1417.65125) Full Text: DOI
Bayoumi, Ahmed M. E.; Ramadan, Mohamed A. Finite iterative Hermitian \(R\)-conjugate solutions of the generalized coupled Sylvester-conjugate matrix equations. (English) Zbl 1409.65023 Comput. Math. Appl. 75, No. 9, 3367-3378 (2018). MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{A. M. E. Bayoumi} and \textit{M. A. Ramadan}, Comput. Math. Appl. 75, No. 9, 3367--3378 (2018; Zbl 1409.65023) Full Text: DOI
Ke, Yifen; Ma, Changfeng Alternating direction method for a class of Sylvester matrix equations with linear matrix inequality constraint. (English) Zbl 1392.65058 Numer. Funct. Anal. Optim. 39, No. 3, 257-275 (2018). MSC: 65F10 15A24 65F30 PDF BibTeX XML Cite \textit{Y. Ke} and \textit{C. Ma}, Numer. Funct. Anal. Optim. 39, No. 3, 257--275 (2018; Zbl 1392.65058) Full Text: DOI
Xu, Wei-Ru; Chen, Guo-Liang The solutions to linear matrix equations \(AX=B\), \(YA=D\) with \(k\)-involutory symmetries. (English) Zbl 1370.15014 Comput. Math. Appl. 73, No. 8, 1741-1759 (2017). MSC: 15A24 PDF BibTeX XML Cite \textit{W.-R. Xu} and \textit{G.-L. Chen}, Comput. Math. Appl. 73, No. 8, 1741--1759 (2017; Zbl 1370.15014) Full Text: DOI
Dai, Lifang; Liang, Maolin Generalized inverse eigenvalue problem for \((P,Q)\)-conjugate matrices and the associated approximation problem. (English) Zbl 1363.65066 Wuhan Univ. J. Nat. Sci. 21, No. 2, 93-98 (2016). MSC: 65F18 15A18 65F20 15A29 62H20 PDF BibTeX XML Cite \textit{L. Dai} and \textit{M. Liang}, Wuhan Univ. J. Nat. Sci. 21, No. 2, 93--98 (2016; Zbl 1363.65066) Full Text: DOI
Yuan, Shi-Fang; Wang, Qing-Wen L-structured quaternion matrices and quaternion linear matrix equations. (English) Zbl 1334.65075 Linear Multilinear Algebra 64, No. 2, 321-339 (2016). MSC: 65F30 65F10 15A24 15B33 PDF BibTeX XML Cite \textit{S.-F. Yuan} and \textit{Q.-W. Wang}, Linear Multilinear Algebra 64, No. 2, 321--339 (2016; Zbl 1334.65075) Full Text: DOI
Peng, Xue; Guo, Xiao-Xia Real iterative algorithms for a common solution to the complex conjugate matrix equation system. (English) Zbl 1410.15032 Appl. Math. Comput. 270, 472-482 (2015). MSC: 15A24 PDF BibTeX XML Cite \textit{X. Peng} and \textit{X.-X. Guo}, Appl. Math. Comput. 270, 472--482 (2015; Zbl 1410.15032) Full Text: DOI
Dong, Chang-Zhou; Wang, Qing-Wen The \(\{P, Q, k + 1 \}\)-reflexive solution to system of matrix equations \(A X = C\), \(X B = D\). (English) Zbl 1393.15019 Math. Probl. Eng. 2015, Article ID 464385, 9 p. (2015). MSC: 15A24 65F30 PDF BibTeX XML Cite \textit{C.-Z. Dong} and \textit{Q.-W. Wang}, Math. Probl. Eng. 2015, Article ID 464385, 9 p. (2015; Zbl 1393.15019) Full Text: DOI
Yuan, Yongxin; Zuo, Kezheng Least-squares symmetric and skew-symmetric solutions of the generalized Sylvester matrix equation \(\sum_{i = 1}^s A_i X B_i + \sum_{j = 1}^t C_j Y D_j = E\). (English) Zbl 1410.15035 Appl. Math. Comput. 265, 370-379 (2015). MSC: 15A24 15B57 PDF BibTeX XML Cite \textit{Y. Yuan} and \textit{K. Zuo}, Appl. Math. Comput. 265, 370--379 (2015; Zbl 1410.15035) Full Text: DOI
Ke, Yi-Fen; Ma, Chang-Feng Alternating direction method for generalized Sylvester matrix equation \(AXB + CYD = E\). (English) Zbl 1410.65123 Appl. Math. Comput. 260, 106-125 (2015). MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{Y.-F. Ke} and \textit{C.-F. Ma}, Appl. Math. Comput. 260, 106--125 (2015; Zbl 1410.65123) Full Text: DOI
Miyajima, Shinya Fast enclosure for the minimum norm least squares solution of the matrix equation \(AXB=C\). (English) Zbl 1363.65079 Numer. Linear Algebra Appl. 22, No. 3, 548-563 (2015). MSC: 65F30 65F20 15A24 65G20 PDF BibTeX XML Cite \textit{S. Miyajima}, Numer. Linear Algebra Appl. 22, No. 3, 548--563 (2015; Zbl 1363.65079) Full Text: DOI
Peng, Zhuohua The \((R, S)\)-symmetric least squares solutions of the general coupled matrix equations. (English) Zbl 1319.65031 Linear Multilinear Algebra 63, No. 6, 1086-1105 (2015). Reviewer: Edgar Pereira (Natal) MSC: 65F30 65F10 15A24 PDF BibTeX XML Cite \textit{Z. Peng}, Linear Multilinear Algebra 63, No. 6, 1086--1105 (2015; Zbl 1319.65031) Full Text: DOI
Yuan, Shi-Fang Least squares pure imaginary solution and real solution of the quaternion matrix equation \(A X B + C X D = E\) with the least norm. (English) Zbl 1442.15026 J. Appl. Math. 2014, Article ID 857081, 9 p. (2014). MSC: 15A24 15B33 PDF BibTeX XML Cite \textit{S.-F. Yuan}, J. Appl. Math. 2014, Article ID 857081, 9 p. (2014; Zbl 1442.15026) Full Text: DOI
Ke, Yifen; Ma, Changfeng The generalized bisymmetric (bi-skew-symmetric) solutions of a class of matrix equations and its least squares problem. (English) Zbl 07021977 Abstr. Appl. Anal. 2014, Article ID 239465, 10 p. (2014). MSC: 65 15 PDF BibTeX XML Cite \textit{Y. Ke} and \textit{C. Ma}, Abstr. Appl. Anal. 2014, Article ID 239465, 10 p. (2014; Zbl 07021977) Full Text: DOI
Li, Hongyi; Gao, Zongsheng; Zhao, Di Least squares solutions of the matrix equation \(AXB+CYD=E\) with the least norm for symmetric arrowhead matrices. (English) Zbl 1354.15010 Appl. Math. Comput. 226, 719-724 (2014). MSC: 15A24 15A09 PDF BibTeX XML Cite \textit{H. Li} et al., Appl. Math. Comput. 226, 719--724 (2014; Zbl 1354.15010) Full Text: DOI
Qiu, Yuyang; Wang, Anding Solving linearly constrained matrix least squares problem by LSQR. (English) Zbl 1336.65066 Appl. Math. Comput. 236, 273-286 (2014). MSC: 65F25 15A24 PDF BibTeX XML Cite \textit{Y. Qiu} and \textit{A. Wang}, Appl. Math. Comput. 236, 273--286 (2014; Zbl 1336.65066) Full Text: DOI
Peng, Zhuohua; Xin, Huimin The reflexive least squares solutions of the general coupled matrix equations with a submatrix constraint. (English) Zbl 1336.65074 Appl. Math. Comput. 225, 425-445 (2013); correction ibid. 247, 233-234 (2014). MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{Z. Peng} and \textit{H. Xin}, Appl. Math. Comput. 225, 425--445 (2013; Zbl 1336.65074) Full Text: DOI
Liang, Mao-Lin; Dai, Li-Fang; Yang, Ya-Fang The \(\{P,Q,k+1\}\)-reflexive solution of matrix equation \(AXB=C\). (English) Zbl 1298.15022 J. Appl. Math. Comput. 42, No. 1-2, 339-350 (2013). Reviewer: John D. Dixon (Ottawa) MSC: 15A24 15A03 PDF BibTeX XML Cite \textit{M.-L. Liang} et al., J. Appl. Math. Comput. 42, No. 1--2, 339--350 (2013; Zbl 1298.15022) Full Text: DOI
Ramadan, Mohamed A.; El-Danaf, Talaat S.; Bayoumi, Ahmed M. E. Finite iterative algorithm for solving a complex of conjugate and transpose matrix equation. (English) Zbl 1295.65050 J. Discrete Math. 2013, Article ID 170263, 13 p. (2013). MSC: 65F30 65F10 15A24 PDF BibTeX XML Cite \textit{M. A. Ramadan} et al., J. Discrete Math. 2013, Article ID 170263, 13 p. (2013; Zbl 1295.65050) Full Text: DOI
Peng, Zhuohua The reflexive least squares solutions of the matrix equation \(A_1X_1B_1+A_2X_2B_2+\cdots +A_lX_lB_l=C\) with a submatrix constraint. (English) Zbl 1281.65071 Numer. Algorithms 64, No. 3, 455-480 (2013). Reviewer: Zhihua Zhang (Beijing) MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{Z. Peng}, Numer. Algorithms 64, No. 3, 455--480 (2013; Zbl 1281.65071) Full Text: DOI
Dong, Chang-Zhou; Wang, Qing-Wen; Zhang, Yu-Ping On the Hermitian \(R\)-conjugate solution of a system of matrix equations. (English) Zbl 1268.15008 J. Appl. Math. 2012, Article ID 398085, 14 p. (2012). MSC: 15A24 65F30 PDF BibTeX XML Cite \textit{C.-Z. Dong} et al., J. Appl. Math. 2012, Article ID 398085, 14 p. (2012; Zbl 1268.15008) Full Text: DOI
Peng, Zhuo-Hua; Zhou, Zi-Jian An efficient algorithm for the submatrix constraint of the matrix equation \(A_1 X_1 B_1+A_2 X_2 B_2+{\cdots}+A_l X_l B_l =C\). (English) Zbl 1255.65076 Int. J. Comput. Math. 89, No. 12, 1641-1662 (2012). MSC: 65F10 65F30 PDF BibTeX XML Cite \textit{Z.-H. Peng} and \textit{Z.-J. Zhou}, Int. J. Comput. Math. 89, No. 12, 1641--1662 (2012; Zbl 1255.65076) Full Text: DOI
Xiong, Zhiping; Qin, Yingying The common Re-nnd and Re-pd solutions to the matrix equations \(AX = C\) and \(XB = D\). (English) Zbl 1248.15015 Appl. Math. Comput. 218, No. 7, 3330-3337 (2011). Reviewer: Grozio Stanilov (Sofia) MSC: 15A24 PDF BibTeX XML Cite \textit{Z. Xiong} and \textit{Y. Qin}, Appl. Math. Comput. 218, No. 7, 3330--3337 (2011; Zbl 1248.15015) Full Text: DOI
Wu, Ai-Guo; Lv, Lingling; Hou, Ming-Zhe Finite iterative algorithms for a common solution to a group of complex matrix equations. (English) Zbl 1229.65071 Appl. Math. Comput. 218, No. 4, 1191-1202 (2011). MSC: 65F30 65F10 15A24 PDF BibTeX XML Cite \textit{A.-G. Wu} et al., Appl. Math. Comput. 218, No. 4, 1191--1202 (2011; Zbl 1229.65071) Full Text: DOI
Liu, Xifu; Yang, Hu An expression of the general common least-squares solution to a pair of matrix equations with applications. (English) Zbl 1222.15021 Comput. Math. Appl. 61, No. 10, 3071-3078 (2011). MSC: 15A24 15A09 PDF BibTeX XML Cite \textit{X. Liu} and \textit{H. Yang}, Comput. Math. Appl. 61, No. 10, 3071--3078 (2011; Zbl 1222.15021) Full Text: DOI
Qiu, Yuyang; Wang, Anding Eigenvector-free solutions to \(AX = B\) with \(PX = XP\) and \(X^H = sX\) constraints. (English) Zbl 1221.15025 Appl. Math. Comput. 217, No. 12, 5650-5657 (2011). Reviewer: Valeriu Prepeliţă (Bucureşti) MSC: 15A24 15A09 65F30 PDF BibTeX XML Cite \textit{Y. Qiu} and \textit{A. Wang}, Appl. Math. Comput. 217, No. 12, 5650--5657 (2011; Zbl 1221.15025) Full Text: DOI
Chang, Hai-Xia; Wang, Qing-Wen; Song, Guang-Jing (\(R,S\))-conjugate solution to a pair of linear matrix equations. (English) Zbl 1201.15006 Appl. Math. Comput. 217, No. 1, 73-82 (2010). Reviewer: Vladimir P. Kostov (Nice) MSC: 15A24 65F30 PDF BibTeX XML Cite \textit{H.-X. Chang} et al., Appl. Math. Comput. 217, No. 1, 73--82 (2010; Zbl 1201.15006) Full Text: DOI
Dehghan, Mehdi; Hajarian, Masoud The reflexive and anti-reflexive solutions of a linear matrix equation and systems of matrix equations. (English) Zbl 1198.15011 Rocky Mt. J. Math. 40, No. 3, 825-848 (2010). Reviewer: Mihail Voicu (Iaşi) MSC: 15A24 15A06 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{M. Hajarian}, Rocky Mt. J. Math. 40, No. 3, 825--848 (2010; Zbl 1198.15011) Full Text: DOI
Yuan, Yongxin Least-squares solutions to the matrix equations \(AX = B\) and \(XC = D\). (English) Zbl 1193.65046 Appl. Math. Comput. 216, No. 10, 3120-3125 (2010). MSC: 65F30 65F20 15A24 PDF BibTeX XML Cite \textit{Y. Yuan}, Appl. Math. Comput. 216, No. 10, 3120--3125 (2010; Zbl 1193.65046) Full Text: DOI
Wang, Minghui; Wei, Musheng; Feng, Yan An iterative algorithm for a least squares solution of a matrix equation. (English) Zbl 1191.65045 Int. J. Comput. Math. 87, No. 6, 1289-1298 (2010). MSC: 65F30 15A24 65F20 PDF BibTeX XML Cite \textit{M. Wang} et al., Int. J. Comput. Math. 87, No. 6, 1289--1298 (2010; Zbl 1191.65045) Full Text: DOI
Sheng, Xingping; Chen, Guoliang An iterative method for the symmetric and skew symmetric solutions of a linear matrix equation \(AXB+CYD=E\). (English) Zbl 1190.65071 J. Comput. Appl. Math. 233, No. 11, 3030-3040 (2010). Reviewer: Michael Jung (Dresden) MSC: 65F30 15A24 PDF BibTeX XML Cite \textit{X. Sheng} and \textit{G. Chen}, J. Comput. Appl. Math. 233, No. 11, 3030--3040 (2010; Zbl 1190.65071) Full Text: DOI
Qiu, Yuyang; Zhang, Zhenyue; Wang, Anding The least squares problem of the matrix equation \(A_1X_1B^T_1+A_2X_2B^T_2=T\). (English) Zbl 1212.15009 Appl. Math., Ser. B (Engl. Ed.) 24, No. 4, 451-461 (2009). MSC: 15A09 15A06 15A24 65F20 PDF BibTeX XML Cite \textit{Y. Qiu} et al., Appl. Math., Ser. B (Engl. Ed.) 24, No. 4, 451--461 (2009; Zbl 1212.15009) Full Text: DOI
Dehghan, Mehdi; Hajarian, Masoud Finite iterative algorithms for the reflexive and anti-reflexive solutions of the matrix equation \(A_1X_1B_1+A_2X_2B_2=C\). (English) Zbl 1171.15310 Math. Comput. Modelling 49, No. 9-10, 1937-1959 (2009). MSC: 15A24 65F10 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{M. Hajarian}, Math. Comput. Modelling 49, No. 9--10, 1937--1959 (2009; Zbl 1171.15310) Full Text: DOI
Hochstenbach, M. E. A Jacobi-Davidson type method for the generalized singular value problem. (English) Zbl 1169.65034 Linear Algebra Appl. 431, No. 3-4, 471-487 (2009). Reviewer: T. C. Mohan (Dehra Dun) MSC: 65F20 65F50 PDF BibTeX XML Cite \textit{M. E. Hochstenbach}, Linear Algebra Appl. 431, No. 3--4, 471--487 (2009; Zbl 1169.65034) Full Text: DOI
Peng, Zhuo-hua; Liu, Jin-wang The generalized bisymmetric solutions of the matrix equation \(A_{1} X_{1} B_{1} + A_{2} X_{2} B_{2} + \dots + A_{l} X_{l} B_{l} = C\) and its optimal approximation. (English) Zbl 1165.65023 Numer. Algorithms 50, No. 2, 127-144 (2009). Reviewer: Jiri Náprstek (Praha) MSC: 65F30 65F10 65F20 15A24 15A30 15A69 PDF BibTeX XML Cite \textit{Z.-h. Peng} and \textit{J.-w. Liu}, Numer. Algorithms 50, No. 2, 127--144 (2009; Zbl 1165.65023) Full Text: DOI
Zhang, Jian-Chen; Zhou, Shu-Zi; Hu, Xi-Yan The \((P,Q)\) generalized reflexive and anti-reflexive solutions of the matrix equation \(AX=B\). (English) Zbl 1168.15008 Appl. Math. Comput. 209, No. 2, 254-258 (2009). Reviewer: Hans Havlicek (Wien) MSC: 15A24 PDF BibTeX XML Cite \textit{J.-C. Zhang} et al., Appl. Math. Comput. 209, No. 2, 254--258 (2009; Zbl 1168.15008) Full Text: DOI
Deng, Yuanbei; Boley, Daniel An optimal approximation problem for a matrix equation. (English) Zbl 1167.65020 Int. J. Comput. Math. 86, No. 2, 321-332 (2009). Reviewer: Vasilis Dimitriou (Chania) MSC: 65F30 15A24 65F20 PDF BibTeX XML Cite \textit{Y. Deng} and \textit{D. Boley}, Int. J. Comput. Math. 86, No. 2, 321--332 (2009; Zbl 1167.65020) Full Text: DOI
Yuan, Shifang; Liao, Anping; Lei, Yuan Least squares Hermitian solution of the matrix equation \((AXB,CXD)=(E,F)\) with the least norm over the skew field of quaternions. (English) Zbl 1145.15303 Math. Comput. Modelling 48, No. 1-2, 91-100 (2008). MSC: 15A24 15B33 PDF BibTeX XML Cite \textit{S. Yuan} et al., Math. Comput. Modelling 48, No. 1--2, 91--100 (2008; Zbl 1145.15303) Full Text: DOI
Liu, Yong Hui Ranks of least squares solutions of the matrix equation \(AXB=C\). (English) Zbl 1157.15014 Comput. Math. Appl. 55, No. 6, 1270-1278 (2008). Reviewer: Vladimir P. Kostov (Nice) MSC: 15A24 15A03 PDF BibTeX XML Cite \textit{Y. H. Liu}, Comput. Math. Appl. 55, No. 6, 1270--1278 (2008; Zbl 1157.15014) Full Text: DOI
Qiu, Yuyang; Qiu, Chunhan Matrix equation \(AXB=E\) with \(PX=sXP\) constraint. (English) Zbl 1150.15008 Appl. Math., Ser. B (Engl. Ed.) 22, No. 4, 441-448 (2007). MSC: 15A24 15A18 15A09 PDF BibTeX XML Cite \textit{Y. Qiu} and \textit{C. Qiu}, Appl. Math., Ser. B (Engl. Ed.) 22, No. 4, 441--448 (2007; Zbl 1150.15008) Full Text: DOI
Peng, Zhuo-Hua; Hu, Xi-Yan; Zhang, Lei The bisymmetric solutions of the matrix equation \(A_{1}X_{1}B_{1}+A_{2}X_{2}B_{2}+\cdots+A_{l}X_{l}B_{l}=C\) and its optimal approximation. (English) Zbl 1123.15009 Linear Algebra Appl. 426, No. 2-3, 583-595 (2007). Reviewer: Vladimir P. Kostov (Nice) MSC: 15A24 65F30 PDF BibTeX XML Cite \textit{Z.-H. Peng} et al., Linear Algebra Appl. 426, No. 2--3, 583--595 (2007; Zbl 1123.15009) Full Text: DOI
Peng, Xiang-Yang; Hu, Xi-Yan; Zhang, Lei The reflexive and anti-reflexive solutions of the matrix equation \(A^{H}XB=C\). (English) Zbl 1115.15014 J. Comput. Appl. Math. 200, No. 2, 749-760 (2007). Reviewer: Mihail Voicu (Iaşi) MSC: 15A24 PDF BibTeX XML Cite \textit{X.-Y. Peng} et al., J. Comput. Appl. Math. 200, No. 2, 749--760 (2007; Zbl 1115.15014) Full Text: DOI
Liao, An-Ping; Lei, Yuan; Yuan, Shi-Fang The matrix nearness problem for symmetric matrices associated with the matrix equation \([A^{T}XA, B^{T}XB] = [C, D]\). (English) Zbl 1115.65045 Linear Algebra Appl. 418, No. 2-3, 939-954 (2006). Reviewer: Keehwan Kim (Kyongsan) MSC: 65F30 15A24 65F20 PDF BibTeX XML Cite \textit{A.-P. Liao} et al., Linear Algebra Appl. 418, No. 2--3, 939--954 (2006; Zbl 1115.65045) Full Text: DOI
Jiang, Tongsong; Liu, Yonghui; Wei, Musheng Quaternion generalized singular value decomposition and its applications. (English) Zbl 1093.15014 Appl. Math., Ser. B (Engl. Ed.) 21, No. 1, 113-118 (2006). Reviewer: Piwen Yang (Sichuan) MSC: 15A24 15B33 15A18 PDF BibTeX XML Cite \textit{T. Jiang} et al., Appl. Math., Ser. B (Engl. Ed.) 21, No. 1, 113--118 (2006; Zbl 1093.15014) Full Text: DOI
Liao, An-Ping; Lei, Yuan Least-squares solution with the minimum-norm for the matrix equation \((A\times B,G\times H) = (C,D)\). (English) Zbl 1087.65040 Comput. Math. Appl. 50, No. 3-4, 539-549 (2005). Reviewer: Constantin Popa (Constanta) MSC: 65F20 15A24 PDF BibTeX XML Cite \textit{A.-P. Liao} and \textit{Y. Lei}, Comput. Math. Appl. 50, No. 3--4, 539--549 (2005; Zbl 1087.65040) Full Text: DOI
Zhang, Zhongzhi; Hu, Xiyan; Zhang, Lei Least-squares solutions of inverse problem for Hermitian generalized Hamiltonian matrices. (English) Zbl 1064.15019 Appl. Math. Lett. 17, No. 3, 303-308 (2004). Reviewer: Oleksandr Kukush (Leuven) MSC: 15A29 15B57 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Appl. Math. Lett. 17, No. 3, 303--308 (2004; Zbl 1064.15019) Full Text: DOI
Zhang, Xian; Thompson, Steve; Duan, Guangren Full-column rank solutions of the matrix equation \(AV\)=\(EVJ\). (English) Zbl 1055.15025 Appl. Math. Comput. 151, No. 3, 815-826 (2004). Reviewer: Mihail M. Konstantinov (Sofia) MSC: 15A24 93C05 93C15 PDF BibTeX XML Cite \textit{X. Zhang} et al., Appl. Math. Comput. 151, No. 3, 815--826 (2004; Zbl 1055.15025) Full Text: DOI
Zhang, Xian The general Hermitian nonnegative-definite and positive-definite solutions to the matrix equation \(GXG^{\ast} + HY H^{\ast}=C\). (English) Zbl 1042.15010 J. Appl. Math. Comput. 14, No. 1-2, 51-67 (2003). Reviewer: Vladimir P. Kostov (Nice) MSC: 15A24 15A06 15A09 PDF BibTeX XML Cite \textit{X. Zhang}, J. Appl. Math. Comput. 14, No. 1--2, 51--67 (2003; Zbl 1042.15010) Full Text: DOI
Peng, Zhenyun; Hu, Xiyan The reflexive and anti-reflexive solutions of the matrix equation \(AX=B\). (English) Zbl 1050.15016 Linear Algebra Appl. 375, 147-155 (2003). Reviewer: Mihail M. Konstantinov (Sofia) MSC: 15A24 PDF BibTeX XML Cite \textit{Z. Peng} and \textit{X. Hu}, Linear Algebra Appl. 375, 147--155 (2003; Zbl 1050.15016) Full Text: DOI
Navarra, A.; Odell, P. L.; Young, D. M. A representation of the general common solution to the matrix equations \(A_1XB_1=C_1\) and \(A_2XB_2=C_2\) with applications. (English) Zbl 0983.15016 Comput. Math. Appl. 41, No. 7-8, 929-935 (2001). Reviewer: Václav Burjan (Praha) MSC: 15A24 PDF BibTeX XML Cite \textit{A. Navarra} et al., Comput. Math. Appl. 41, No. 7--8, 929--935 (2001; Zbl 0983.15016) Full Text: DOI
Xu, Guiping; Wei, Musheng; Zheng, Daosheng On solutions of matrix equation \(AXB+CYD=F\). (English) Zbl 0933.15024 Linear Algebra Appl. 279, No. 1-3, 93-109 (1998). MSC: 15A24 PDF BibTeX XML Cite \textit{G. Xu} et al., Linear Algebra Appl. 279, No. 1--3, 93--109 (1998; Zbl 0933.15024) Full Text: DOI
Huang, Liping The matrix equation \(AXB-GXB=E\) over the quaternion field. (English) Zbl 0840.15017 Linear Algebra Appl. 234, 197-208 (1996). Reviewer: Chen Zhijie (Shanghai) MSC: 15B33 15A24 PDF BibTeX XML Cite \textit{L. Huang}, Linear Algebra Appl. 234, 197--208 (1996; Zbl 0840.15017) Full Text: DOI
Jameson, Antony; Kreindler, Eliezer; Lancaster, Peter Symmetric, positive semidefinite, and positive definite real solutions of \(AX=XA^ T\) and \(AX=YB\). (English) Zbl 0757.15006 Linear Algebra Appl. 160, 189-215 (1992). Reviewer: T.Nôno (Hiroshima) MSC: 15A24 PDF BibTeX XML Cite \textit{A. Jameson} et al., Linear Algebra Appl. 160, 189--215 (1992; Zbl 0757.15006) Full Text: DOI
Chu, King-Wah Eric Symmetric solutions of linear matrix equations by matrix decompositions. (English) Zbl 0688.15003 Linear Algebra Appl. 119, 35-50 (1989). Reviewer: M.Kono MSC: 15A24 65F30 65F15 15A18 15A23 PDF BibTeX XML Cite \textit{K.-W. E. Chu}, Linear Algebra Appl. 119, 35--50 (1989; Zbl 0688.15003) Full Text: DOI