×

zbMATH — the first resource for mathematics

Branching processes. II. (English) Zbl 0846.60083
This is a survey continuing the work started in part I [ibid. 39, No. 1, 2431-2475 (1987); translation from Itogi Nauki Tekh., Ser. Teor. Veroyatn., Mat. Stat., Teor. Kibern. 23, 3-67 (1985; Zbl 0608.60076)]. Its bibliography runs to 543 entries, with very brief accounts of many of the articles provided: a valuable resource.

MSC:
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60-02 Research exposition (monographs, survey articles) pertaining to probability theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Ju. Ale?kjavi?ius, ?Controlled branching processes,?Litovsk. Mat. Sb.,14, No. 4, 23?31 (1974).
[2] S. A. Aliev, ?On the convergence of Galton-Watson branching processes,?Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk,4, No. 5, 14?18 (1983).
[3] S. A. Aliev, ?A limit theorem for Galton-Watson branching processes with immigration.?Ukr. Mat. Zh.,37, No. 5, 656?659 (1985).
[4] S. A. Aliev, ?A limit theorem for branching processes with immigration,?Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk,6, No. 2, 43?47 (1985).
[5] S. A. Aliev, ?Convergence of Galton-Watson branching processes with several types of particles.? In:Stochastic Analysis and Its Applications, Inst. Mat. Akad. Nauk UkrSSR, 4?9, Kiev (1989).
[6] S. A. Aliev and V. M. Shurenkov, ?Asymptotics of Galton-Watson processes that are close to critical processes.? In:Asymptotic Problems in the Theory of Random Processes, Inst. Mat. Akad. Nauk UkrSSR,113, 5?6, Kiev (1987).
[7] D. Alimov and V. N. Reshetnyak, ?A branching process with immigration and bounded emigration.? In:Applied Problems of Probability Theory, Inst. Mat. Akad. Nauk UkrSSR, 4?14, Kiev (1982).
[8] V. I. Afanas’ev, ?On the nonextinction probability of a subcritical branching process in a random environment,? Manuscript Dep. VINITI. No. 1, 794?799 (1979).
[9] I. S. Badalbaev, ?Limit theorems for multidimensional branching processes with immigration of growing intensity.? In:Asymptotic Problems for Probability Distributions, 30?44, Fan, Tashkent (1984).
[10] I. S. Badalbaev, ?Limit theorems for an estimate of the direction of an eigenvector of a two-type Galton Watson process,?Dokl. Akad. Nauk UzSSR, No. 2, 3?5 (1987). · Zbl 0636.60086
[11] I. S. Badalbaev, ?Properties of a statistical estimate for the Perron root of the mean matrix of a multi-type Galton-Watson branching process,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 4, 8?14 (1987).
[12] I. S. Badalbacv and A. N. Ganikhodzhaev, ?Some generalizations of limit theorems for branching processes with decreasing immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 6, 3?8 (1987).
[13] I. S. Badalbaev and A. N. Ganikhodzhaev, ?A limit theorem for the Bellman-Harris branching process with immigration under the condition of nonextinction.?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 8?14 (1989).
[14] I. S. Badalbaev and Yu. T. Zhuraev, ?Limit theorems for a statistic in a branching process with immigration.? In:Random Processes and Mathematical Statistics, 32?46, Fan, Tashkent (1983).
[15] I. S. Badalbaev and A. M. Zubkov, ?Limit theorems for a sequence of branching processes with immigration,:?teor. Vcroyatn. Primen.,28, No. 2, 382?388 (1983). · Zbl 0511.60076
[16] S. I. Badalbaev and A. Mashrabbaev, ?Asymptotic behavior of the extinction probability of branching processes with immigration.?Dokl. Akad. Nauk UzSSR, No. 1, 4?7 (1984). · Zbl 0545.60079
[17] I. S. Badalbaev and A. Mashrabbaev, ?Life periods of a branching Bellman-Harris process with immigration.? In:Probability Distributions and Mathematical Statistics. Proceedings of the 3th All-Union Conf. Fergana, September 20?22, 1983, 60?82, Fan, Tashkent (1986). · Zbl 0668.60076
[18] I. S. Badalbaev and A. Mashrabbaev, ?On the limit distribution of a critical branching process with immigration under the condition of not hitting the zero state,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk. No. 5, 3?4 (1986).
[19] I. S. Badalbaev and A. Mashrabbaev, ?Asymptotic behavior of the probability of extinction of branching processes with immigration.? In:Asymptotic Methods in Mathematical Statistics, 17?34, Fan, Tashkent (1987). · Zbl 0668.60076
[20] I. S. Badalbaev and A. Mukhitdinov, ?On an estimate of the direction of an eigenvector of the mean matrix in a multi-type Galton-Watson process with immigration.? In:Asymptotic Methods in Probability Theory and Mathematical Statistics, 44?62, Fan, Tashkent (1988). · Zbl 0703.62089
[21] I. S. Badalbaev and A. Mukhitdinov, ?The role of the spectrum of the eigenvalues of the mean matrix in the limit behavior of the trajectories of a multi-type branching process,?Izv. Akad. Nauk UzSSR, Ser. Fiz. Mat. Nauk, No. 2, 7?12 (1987). · Zbl 0632.60082
[22] I. S. Badalbaev and A. Mukhitdinov, ?Limit theorems for some functionals in critical multi-type branching processes.?Teor. Veroyatn. Primen.,34, No. 4, 753?757 (1989). · Zbl 0694.60081
[23] I. S. Badalbaev and A. Mukhitdinov, ?On the limit distributions of some functionals in multi-type branching processes,?Teor. Veroyatn. Primen.,35, No. 4, 642?654 (1990). · Zbl 0741.60085
[24] I. S. Badalbaev and A. Mukhitdinov,Statistical Problems of Multi-Type Branching Processes, Fan, Tashkent (1990). · Zbl 0800.62514
[25] I. S. Badalbaev and I. Rakhimov, ?Further results on branching random processes with immigration of decreasing intensity,?Teor. Veroyatn. Primen.,28, No. 4, 775?780 (1983).
[26] I. S. Badalbaev and I. Rakhimov, ?New limit theorems for multi-type branching processes with immigration of decreasing intensity,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. N auk, No. 2, 17?22 (1985). · Zbl 0575.60084
[27] I. S. Badalbaev and R. M. Salakhitdinov, ?The rate of convergence in limit theorems for branching random processes with decreasing immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 5, 10?16 (1983). · Zbl 0548.60082
[28] I. S. Badalbaev and R. M. Salakhitdinov, ?Estimates of the rate of convergence in limit theorems for branching processes with decreasing immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-M.at. Nauk, No. 1, 3?8 (1988). · Zbl 0659.60118
[29] I. S. Badalbaev and R. M. Salakhitdinov, ?Generalizations of limit theorems for branching processes with immigration of decreasing intensity,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 1, 1?12 (1985). · Zbl 0584.60090
[30] M. Yu. Belyaev, ?Mixtures of Gaussian distributions in branching processes,?Uspekhi Mat. Nauk,39, No. 4. 147?148 (1984).
[31] M. Yu. Belyaev, ?Convergence of functionals of supercritical Markovian branching processes,?Dokl. Akad. Nauk SSSR,283, No. 4, 791?794 (1985).
[32] M. Yu. Belyaev, N. A. Berestova, and S. A. Molchanov, ?Limit theorems for branching Markov processes,?Dokl. Akad. Nauk SSSR,268, No. 5, 1039?1043 (1983). · Zbl 0525.60024
[33] Yu. K. Belyaev and A. A. Zamyatin, ?A multiplier estimate for the distribution function of the lifetime of a particle in the Bellman-Harris process,?Vestn. Mosk. Gos. Univ. Mat. Mekh., No. 2, 15?22 (1987).
[34] N. A. Berestova, ?Asymptotic behavior of the probability of nonextinction for a critical branching process in a Markovian random environment,?Dokl. Akad. Nauk SSSR. 267, No. 1, 18?22 (1982). · Zbl 0521.60086
[35] R. V. Boiko, ?On controlled branching processes with finite number of particle types.? In:Questions of Statistics and Control of Branching Processes, 14?31. Inst. Mat. Akad. Nauk UkrSSR, Kiev (1973).
[36] R. V. Boiko, ?The asymptotic behavior of the extinction probability of a branching process with varying environment (a critical case).? In:Studies in the Theory of Random Processes, 21?30, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1976).
[37] R. V. Boiko, ?Branching processes with immigration in a varying environment, and some queueing systems.? In:Random Processes in Problems of Mathematical Physics, 36?56, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1979).
[38] R. V. Boiko, ?Limit theorems for a branching process in a varying environment.? In:Probabilistic Methods of Infinite-Dimensional Analysis, 13?24, Inst. Mat. Akad. Na.uk UkrSSR. Kiev (1980).
[39] R. V. Boiko ?Limit theorems for a branching process with immigration in a varying environment,?Ukr. Mat. Zh.,34, No. 4, 488?492 (1982).
[40] R. V. Boiko, ?Limit theorems for a branching process in a varying environment which describes the development of a population in a limiting environment,?Ukr. Mat. Zh.,34, No. 6, 681?687 (1982).
[41] R. V. Boiko, ?Life periods of a branching process with immigration in a limiting environment.?Ukr. Mat. Zh.,35, No. 3, 283?289 (1983).
[42] R. V. Boiko, ?Limit behavior of a branching process in a varying mode environment.? In:Problems of the Theory of Probability Distributions, 3?8, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1983).
[43] R. V. Boiko, ?Behavior of a branching process with infinite variance in a limiting environment,?Ukr. Mat. Zh.,37, No. 3, 280?285 (1985).
[44] R. V. Boiko, ?Behavior of branching processes with immigration in a stimulating environment,?Ukr. Mat. Zh.,37, No. 4, 423?430 (1985).
[45] R. V. Boiko, ?Limit behavior of a branching process in a limiting environment.? In:Analytic Methods in Reliability Theory, 3?12, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1985).
[46] R. V. Boiko, ?The behavior of branching processes in a stimulating environment.? In:Random Processes, Theory and Practice, 14?22, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1985).
[47] R. V. Boiko, ?Limit theorems for a branching process in a varying environment.?Teor. Veroyatn. Mat. Statist., No. 35, 6?13, Kiev (1986).
[48] R. V. Boiko, ?Two limit theorems for a branching process in a varying environment,?Dokl. Akad. Nauk UkrSSR, Ser. A, No. 7, 3?6, (1986).
[49] R. V. Boiko, ?On the power growth of mycelium colonies in models constructed on the basis of branching processes in a varying environment.? In:Probability Methods for the Investigation of Systems with an Infinite Number of Degrees of Freedom, 17?23, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1986).
[50] R. V. Boiko, ?Branching processes with stabilizing branching regime.?Teor. Veroyatn. Mat. Statist., Xo. 38, 9 16, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1988).
[51] R. V. Boiko, ?The limiting distribution of a branching process with intensities of large transformations of particles that stabilize with population growth.? InSelected Problems in the Current Theory of Random Processes, 13?17, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1988).
[52] R. V. Boiko, Y. N. Kotov, and S. V. Reshetnikov, ?A stochastic model of the growth of a planted mycelium colony,?Dokl. Akad. Nauk SSSR,296, No. 6, 1484?1487 (1987).
[53] K. A. Borovkov, ?On the rate of convergence of a branching process to a diffusion process.?Teor. Veroyatn. Primen.,30, No. 3, 468?477 (1985). · Zbl 0572.60085
[54] K. A. Borovkov, ?A method of proving limit theorems for branching processes,?Teor. Veroyatn. Primen. 33, No. 1, 115?123 (1988). · Zbl 0668.60073
[55] A. V. Vasil’ev, ?On the control of the number of a cell population consisting of two types of cells,?Probl. Peredachi Inf.,4, No. 4, 84?85 (1968).
[56] V. A. Vatutin, ?The asymptotic probability of branching processes with immigration hitting zero,?Teor. Veroyatn. Primen.,19, No. 1, 26?35, (1974).
[57] Y. A. Vatutin, ?A conditional limit theorem for a critical branching process with immigration.?Mat. Zametki,21, No. 5, 727?736 (1977).
[58] Y. A. Vatutin, ?A critical Galton-Watson branching process with emigration,?Teor. Veroyatn. Primen. 22, No. 3, 482?497 (1977).
[59] V. A. Vatutin, ?Sufficient conditions for regularity of Bellman-Harris branching processes.?Teor. Veroyatn. Primen.,31, No. 1. 59?66 (1986).
[60] V. A. Vatutin, ?A critical Bellman-Harris process with particles of final type,?Teor. Veroyatn. Primen. 31, No. 3, 491?502 (1986).
[61] V. A. Vatutin, ?Critical Bellman-Harris branching processes starting with a large number of particles,?Mat. Zametki,40, No. 4, 527?541 (1986).
[62] Y. A. Vatutin, ?Branching processes with infinite variance.? In: Fourth International Summer School on Probability Theory and Mathematical Statistics, 9?38 (Varna, 1982), Bulgar. Akad. Nauk, Sofia (1983). · Zbl 0900.60093
[63] V. A. Vatutin, ?Asymptotic properties of the critical Bellman-Harris branching processes starting with a large number of particles.? In:Stability Problems for Stochastic Models (Proc. Sem. Moscow. 1986). 8 15, Yses. Nauch. Issled. Inst. Sistem. Issled., Moscow (1987). · Zbl 0736.60080
[64] V. A. Vatutin and A. M. Zubkov, ?Branching processes. I.? In:Probability Theory, Mathematical Statistics, Theoretical Cybernetics,23, 1?67, Itogi Nauki i Tekhniki, Akad. Nauk SSSR/VINITI/, Moscow (1985). · Zbl 0608.60076
[65] V. A. Vatutin and S. M. Sagitov, ?Critical decomposable Bellman-Harris processes with two types of particles,?Tr. Mat. Inst. Akad. Nauk SSSR,177, 3?20 (1986). · Zbl 0715.60107
[66] V. A. Vatutin and S. M. Sagitov, ?Critical decomposable Bellman-Harris process with two types of particles,?Dokl. Akad. Nauk SSSR,291, No. 5, 1040?1043 (1986). · Zbl 0715.60107
[67] V. A. Vatutin and S. M. Sagitov, ?Critical decomposable Bellman-Harris processes with two types of particles, which are ?far from? Markov processes,?Mat. Zametki,43, No. 2, 276?282 (1988). · Zbl 0715.60107
[68] V. A. Vatutin and S. M. Sagitov, ?Decomposable critical Bellman-Harris branching process with two particle types. I,?Teor. Veroyatn. Primen.,33, No. 3, 495?507 (1988). · Zbl 0649.60088
[69] V. A. Vatutin and S. M. Sagitov, ?Decomposable critical Bellman-Harris branching process with two particle types. II,?Teor. Veroyatn. Primen,34, No. 2, 251?262 (1989). · Zbl 0692.60065
[70] V. A. Vatutin and N. M. Yanev, ?A multi-dimensional critical Galton-Watson branching process with final types.?Diskret. Mat., 1, No. 4, 113?122 (1989). · Zbl 0725.60095
[71] G. V. Vinokurov, ?A Galton-Watson critical process bounded from below,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 4, 13?18 (1983).
[72] G. V. Vinokurov, ?Limit theorems for a critical Galton-Watson branching process with emigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 4, 12?16 (1986).
[73] G. V. Vinokurov, ?On a critical Galton-Watson branching process with emigration,?Teor. Veroyatn. Pnmen.,32, No. 2, 378?382 (1987). · Zbl 0663.60065
[74] G. V. Vinokurov, ?Life periods of a critical Galton-Watson process with migration,? Manuscript Dep. VINITI, No. 7369-B88 (1988). 7?5.
[75] E. I. Volkova, ?Some asymptotic properties of branching processes with particle motion.?Dokl. Akad. Nauk SSSR,279, No. 2, 290?293 (1984). · Zbl 0587.60087
[76] E. I. Volkova, ?Asymptotics of moments of a particle number in a branching process with a random walk,? Manuscript Dep. VINITI, No. 2376?2385 (1985).
[77] A. N. Ganikhodzhaev, ?Some generalized limit theorems for branching processes with immigration of decreasing intensity (a discrete case),?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 5, 3?7 (1988).
[78] O. N. Gol’tyaeva and V. P. Chistyakov, ?On estimating the criticality parameter of a branching process with immigration,?Teor. Veroyatn. Pnmen.,31, No. 4, 784?788 (1986).
[79] S. A. Grishechkin, ?On the regularity of branching processes with several types of particles,?Teor. Veroyatn. Primen.,31, No. 2, 278?289 (1986). · Zbl 0605.60073
[80] S. A. Grishechkin, ?Investigation of queueing systems with random choice discipline by branching process methods,?Dokl. Akad. Nauk SSSR,300, No. 1, 23?26 (1988). · Zbl 0671.60092
[81] S. A. Grishechkin, ?One-channel systems with cyclic access or with processor sharing, and branching processes,?Mat. Zametki,44, No. 4, 433?448 (1988). · Zbl 0661.60114
[82] S. A. Grishechkin, ?Branching processes and queueing systems with repeated orders or with random discipline.?Teor. Veroyatn. Primen.,35, No. 1, 35?50 (1990). · Zbl 0724.60092
[83] S. A. Grishechkin, ?Branching processes close to explosive and their applications to priority queues.? In:Stability Problems for Stochastic Models, 34?42. (Proc. Sem. Moscow. 1989), Vses. Nauch. Issled. Inst. Sistem. Issled., Moscow (1989).
[84] M. Ts. Dimitrov, ?A process of birth a.nd death type for a bisexual population with immigration,?PLISKA Stud. Mat. Bulgar.,7, 10?17 (1984).
[85] I. I. Ezhov and A. A. Shakhbazov, ?On a. class of branching processes,?Teor. Veroyatn. Primen.,20, No. 1, 182?187 (1975). · Zbl 0346.60051
[86] M. I. Erofeev, ?Some limit theorems for branching processes with energy,?’ In:Functional-Theoretic Methods in Problems of Mathematical Physics, 46?49, Energoatomizdat. Moscow (1986).
[87] V. M. Zolotarev, ?Refinement of some theorems in the theory of random branching processes.?Teor. Veroyatn. Primen.,2, No. 2, 256?266 (1957).
[88] L. K. Zonenashvili, ?Existence of a Malthusian parameter for supercritical Grump-Mode-Jagers branching processes with an infinite number of types,?Soobshch. Akad. Nauk GrSSR,119, No. 1, 53?56 (1985). · Zbl 0577.60080
[89] L. K. Zonenashvili and V. M. Shurenkov, ?Grump-Mode-Jagers branching processes with an infinite set of types.? In:Asymptotic Problems in the Theory of Random Processes, 83?86, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1987).
[90] A. M. Zubkov, ?A degeneracy condition for a bounded branching process,?Mat. Zametki,8, No. 1, 9?18 (1970).
[91] A. M. Zubkov, ?Life periods of a branching process with immigration,?Teor. Veroyatn. Primen,17, No. 1. 179?188 (1972). · Zbl 0267.60084
[92] A. M. Zubkov, ?A degeneracy condition for bounded continuous-time branching processes,?Teor. Veroyatn. Pnmen.,17, No. 2, 296?309 (1972). · Zbl 0279.60081
[93] A. M. Zubkov, ?Analogies between Galton-Watson processes and ?-branching processes,?Teor. Veroyatn. Primen.,19, No. 2, 319?339 (1974). · Zbl 0321.60063
[94] A. M. Zubkov, ?Limit behavior of decomposable critical branching processes with two types of particles,?Teor. Veroyatn Primen.,27, No. 2, 228?238 (1982).
[95] M. Ji?ina, ?Stochastic branching processes with a continuous space of states,?Teor. Veroyatn. Primen.,4, No. 4, 482?484 (1959).
[96] S. V. Kaverin, ?Limit theorems for a critical Galton-Watson process with emigration,? Manuscript Dep. VINITI, No. 7766?84, (1984).
[97] S. V. Kaverin, ?Some results for a Galton-Watson process with migration.?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 22?27 (1985).
[98] S. V. Kaverin, ?Refinement of limit theorems for critical branching processes with emigration,?Teor. Veroyatn. Primen.,35, No. 3, 570?575 (1990). · Zbl 0735.60089
[99] S. V. Kaverin and A. S. Atamatov, ?Branching stochastic processes with unbounded migration of particles,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 1, 22?27 (1988). · Zbl 0666.60077
[100] A. V. Kalinkin, ?Extinction probability of a branching process with interaction of particles,?Teor. Veroyatn. Primen.,27, No. 1, 192?197 (1982). · Zbl 0501.60087
[101] A. V. Kalinkin, ?Final probabilities for a branching stochastic process with interaction of particles,?Dokl. Akad. Nauk SSSR,269, No. 6, 1309?1312 (1983).
[102] I. B. Kalugin, ?Branching processes and random mappings of finite sets,?Mat. Zametki,34, No. 5, 757?771 (1983). · Zbl 0533.60012
[103] A. B. Karpenko, ?Transition phenomena, for the total progeny of a branching Galton-Watson process,? Preprint. Inst. Mat. SO Akad. Nauk SSSR, No. 5, 1?21 (1990).
[104] M. Yu. Kitaev, and S. F. Yashkov, ?The distribution of conditional sojourn time in a system with uniform sharing of device,?Izv. Akad. Nauk SSSR, Ser. Tekh. Kibern., No. 4, 211?215 (1978).
[105] M. V. Kozlov, ?On the asymptotic behavior of the probability of nonextinction for critical branching processes in a random environment,?Teor. Veroyatn. Primen.,21, No. 4, 813?825 (1976).
[106] A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, ?Study of a diffusion equation connected with the growth of quantity of substance and its application to a biological problem.?Bull. MGU, Ser. Mat. Mekh.,1, No. 6, 1?26 (1937).
[107] V. N. Kotov, ?Kinetics of the growth of a mycelium colony.? In:Probability Methods for the Investigation of Systems with an Infinite Number of Degrees of Freedom, 83?90, Akad. Nauk UkrSSR, Kiev (1986).
[108] V. A. Labkovskii, ?A limit theorem for generalized stochastic branching processes depending on the size of the population,?Teor. Veroyatn. Pnmen.,17, No. 1, 71?83 (1972).
[109] E. A. Lebedov, ?Limit theorems for critical branching processes in a random environment.? In:Probability Theory and Mathematical Statistics, No. 20, 68?76, Naukova Dumka, Kiev (1979).
[110] E. A. Lebedev, ?Limit theorems for critical branching processes in a random environment.? In:Analytic Methods in Probability Theory. 133?136, Naukova Dumka, Kiev (1979).
[111] E. A. Lebedev, ?Diffusion approximation of branching processes withk types of particles and immigration,? In:Analytic Methods in Reliability Theory, 97?102, Inst. Mat. Akad. Nauk UkrSSR, Kiev (1985).
[112] E. A. Lebedev, ?Convergence of functionals of branching processes with immigration,?Dokl. Akad. Nauk UkrSSR. Ser. A, No. 8, 58?61 (1985). · Zbl 0577.60079
[113] E. A. Lebedev, ?Diffusion approximation of branching processes.? In:Markov Random Processes and Their Applications in Queueing Theory, 51?53, Saratov (1985).
[114] L. V. Levina, A. M. Leontovich, and I. I. Shapiro-Pyatetskii, ?A controlled branching process,?Probl. Peredachi Inform.,4, No. 2, 72?82 (1968).
[115] T. M. Liggett,Interacting Particle Systems, Springer-Verlag, New York (1985). · Zbl 0559.60078
[116] P. I. Maister, ?Branching random walk on an interval,?C. R. Acad. Bulgare Sci.,37, No. 4, 461?464 (1984).
[117] G. D. Makarov, ?Large deviations in close-to-critical branching processes.? Manuscript, 756?781, Dep. VINITI (1981).
[118] A. Mashrabbaev, ?Life periods of an r > 1 type branching process with immigration.? In:Limit Theorems for Probability Distributions, 11?21, Fan, Tashkent (1985). · Zbl 0614.60078
[119] K. V. Mitov, ?A branching process with several types of particles and immigration in the zero state.? In:Mathematics and Mathematical Education, 202?210.Proc. 12th Conf. of Bulgar. Math. Union (Albena,1983), Bulgar. Akad. Nauk, Sofia (1983). · Zbl 0527.60078
[120] K. V. Mitov, ?Bellman-Harris process with a flexible barrier at zero,?PLISKA Stud. Math. Bulgar.,7, No. 134?145 (1984).
[121] K. V. Mitov, ?A limit theorem for a Galton-Watson process with immigration at zero and with several types of particles.? In:Mathematics and Mathematical Education, 504?509.Proc. 16th. Conf. of Bulgar. Math. Union (Sunny Beach, 1987), Bulgar. Akad. Nauk, Sofia (1987).
[122] K. V. Mitov, ?A limit theorem for a multi-type Galton-Watson process with decreasing immigration depending on the state of the process.? In:Mathematics and Mathematical Education, 293?299.Proc. 17th, Conf. of Bulgar. Math, union (Sunny Beach, 1988), Bulgar. Akad. Nauk, Sofia (1988).
[123] K. V. Mitov, ?The Bellman-Harris process with several types of particles and immigration in the zero state.? In:Mathematics and Mathematical Education, 423?428,Proc. 18th Conf. of Bulgar. Math. Union (Albena, 1989), Bulgar. Akad. Nauk, Sofia (1989).
[124] K. V. Mitov. V. A. Vatutin, and N. M. Yanev, ?Critical Galton-Watson processes with decreasing immigration depending on the state of the process,?Serdica,10, No. 4, 412?424 (1984). · Zbl 0583.60082
[125] K. V. Mitov and N. M. Yanev, ?A critical branching process with decreasing immigration depending on the state of the process,?Serdica,11, No. 1. 25?41 (1985). · Zbl 0583.60083
[126] R. I. Mukhamedkhanova and A. Ganiev, ?Asymptotic expansion for the probability of continuation of a discrete-time branching stochastic process in a critical case,?Izv. Akad. Nauk UzSSR, Ser. Fiz. Mat. Nauk, No. 6, 59?61 (1969).
[127] A. Mukhitdinov, ?Limit theorems for some statistics in subcritical multi-type branching processes.? In:Asymptotic Methods in Mathematical Statistics, 72?78, Fan, Tashkent (1987).
[128] S. V. Nagaev and M. Kh. Asadullin, ?Limit theorems for a critical branching process with immigration.?Teor. Veroyatn. Primen.,26, No. 2, 427?428 (1981).
[129] S. Y. Naga.ev and M. Kh. Asadullin, ?A scheme for summation of a random number of independent random variables with application to branching processes with immigration.?Dokl. Akad. Nauk SSSR,285, No. 2, 293?296 (1985).
[130] S. Y. Nagaev and A. V. Karpenko, ?Limit theorems for the total progeny of a Galton-Watson branching process,? Preprint, Inst. Math. SO Akad. Na.uk SSSR, No. 33, 3?36 (1987).
[131] S. V. Nagaev and L. Y. Khan, ?Limit theorem for a critical Galton -Watson branching process with migration.?Teor. Veroyatn. Primen.,25, No. 3, 523?534 (1980).
[132] G. L. Pastore, ?Some theorems for Markov branching processes.?Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh., No. 4, 16?25 (1978). · Zbl 0398.60087
[133] G. L. Pastore, ?A branching diffusion process on a compact space,?Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh., No. 5, 9?15 (1978). · Zbl 0387.60096
[134] A. K. Polin, ?Limit theorems for a decomposable branching process starting with a large number of particles.? In:Probability Problems of Applied Mathematics, 54?61, Petrozavodsk (1984).
[135] I. Rakhimov, ?Limit theorems for multi-type age-dependent branching processes with immigration,?Dokl. Akad. Nauk UzSSR, No. 4, 3?5 (1984). · Zbl 0558.60065
[136] I. Rakhimov, ?Uniform estimates in limit theorems for branching processes with immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 24?29 (1984).
[137] I. Rakhimov, ?A limit theorem for multi-type age-dependent branching stochastic processes with immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 5, 38?40 (1984).
[138] I. Rakhimov, ?Limit distributions for the total number of particles in critical Galton-Watson processes with immigration.? In:Asymptotic Problems for Probability Distributions, 106?119, Fan, Tashkent (1984).
[139] I. Rakhimov, ?Limit distributions for integrals of the Bellman-Harris process with inhomogeneous immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 5, 20?25 (1985).
[140] I. Rakhimov, ?Convergence of a sequence of branching processes with immigration to processes with continuous state space.? In:Limit Theorems for Probability Distributions, 134?148, Fan, Tashkent (1985).
[141] I. Rakhimov, ?Critical branching processes with infinite variance and decreasing immigration,?Teor. Veroyatn. Primen.,31, No. 1, 98?110 (1986). · Zbl 0603.60079
[142] I. Rakhimov, ?Asymptotic behavior of the probability of hitting a fixed state for Galton-Watson processes with decreasing immigration. I,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 2, 33?38 (1986).
[143] I. Rakhimov, ?Asymptotic behavior of the probability of hitting a fixed state for Galton-Watson processes with decreasing immigration. II,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 38?43 (1986).
[144] I. Rakhimov, ?A limit theorem for random sums of dependent indicators and its applications in the theory of branching processes,?Teor. Veroyatn. Primen.,32, No. 2, 317?326 (1987). · Zbl 0663.60025
[145] I. Rakhimov, ?Two limit theorems for multi-type age-dependent branching processes with immigration.? In:Asymptotic Methods of Mathematical Statistics, 97?108, Fan, Tashkent (1987). · Zbl 0649.60089
[146] I. Rakhimov, ?Statistical estimates for parameters of a subcritical Galton-Watson process with a reflecting screen.? In:Probabilitity Models and Mathematical Statistics, 76?87, Fan, Tashkent (1987). · Zbl 0703.62088
[147] I. Rakhimov, ?Now limit theorems for Galton-Watson processes with infinite variance,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 4, 29?36 (1987).
[148] I. Rakhimov, ?Asymptotics of the probability of nonextinction of decomposable branching processes with decreasing immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 2, 26?28 (1988).
[149] I. Rakhimov, ?Local limit theorems for critical Galton-Watson processes with decreasing immigration,?Teor. Veroyatn. Primen.,33, No. 2, 387?392 (1988). · Zbl 0672.60083
[150] I. Rakhimov, ?A local theorem for Galton-Watson processes with immigration in the case of a uniform limit, distribution.?Serdica,14, No. 3, 234?244 (1988). · Zbl 0659.60119
[151] I. Rakhimov, ?A local limit theorem for Galton-Watson processes with slowly decreasing immigration.? In:Asymptotic Methods in Probability Theory and Mathematical Statistics, 121?136, Fan, Tashkent (1988). · Zbl 0714.60076
[152] I. Rakhimov, ?Asymptotic behavior of families of particles in branching stochastic processes,?Dokl. Akad. Nauk SSSR,305, No. 3, 540?542 (1989). · Zbl 0695.60082
[153] I. Rakhimov, ?Branching stochastic processes with generalized immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 2, 35?40 (1989).
[154] I. Rakhimov, ?Asymptotic behavior of families of particles in branching stochastic processes.? In:Functionals of Random Processes and Statistical Inferences, 58?71, Fan, Tashkent (1989). · Zbl 0695.60082
[155] I. Rakhimov and S. V. Kaverin, ?A class of limit distributions of critical branching processes with decreasing immigration depending on the state,?Dokl. Akad. Nauk UzSSR, No. 1, 4?6 (1986). · Zbl 0605.60071
[156] I. Rakhimov and S. V. Kaverin, ?A method for proving limit theorems for branching processes with state-dependent immigration.? In:Probability Models and Mathematical Statistics, 61?76, Fan, Tashkent (1987). · Zbl 0714.60075
[157] I. Rakhimov and S. Kurbanov, ?Branching processes with inhomogeneous migration and infinite variance.? In:Functionals of Random Processes and Statistical Inferences, 71?85, Fan, Tashkent (1989). · Zbl 0754.60092
[158] I. Rakhimov and R. M. Salakhitdinov, ?Some generalizations of limit theorems for Galton-Watson processes with infinite variance and decreasing immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 25?30 (1987).
[159] Y. N. Reshetnyak, ?A class of branching processes with interaction of particles.? In:Analytic Methods in Reliability Theory, 106?114., Inst. Mat. Akad. Na.uk UkrSSR, Kiev (1985).
[160] Yu. M. Ryzhov and A. Y. Skorokhod, ?Homogeneous branching processes with a. finite number of types and with continuously varying mass,?Teor. Veroyatn. Primen.,15, No. 4, 722?726 (1970).
[161] S. M. Sagitov, ?The probability of a critical branching process with immigration hitting zero,?Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat. Nauk, No. 5, 63?65 (1982).
[162] S. M. Sagitov, ?Limit theorem for a. critical branching process of the general type,?Mat. Zametki,34, No. 3, 453?461 (1983). · Zbl 0559.60068
[163] S. M. Sagitov, ?Reduced critical Bellman-Harris branching process with several types of particles,?Teor. Veroyatn. Primen.,30, No. 4, 737?749 (1985).
[164] S. M. Sagitov, ?Limit behavior of general branching processes,?Mat. Zametki,39, No. 1, 144?155 (1986). · Zbl 0601.60083
[165] S. M. Sagitov, ?On a critical branching process with immigration hitting zero.? In:Theoretical and Applied Problems of Mathematical Modeling, 5?11, Nauka KazSSR, Alma-Ata (1988).
[166] S. M. Sagitov, ?A branching process under the conditions of extinction in the distant future,?Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat. Nauk, No. 3, 37?38 (1986).
[167] S. M. Sagitov, ?Multi-dimensional limit theorems for a branching process with one type of particles,?Mat. Zametki,42, No. 1, 157?165 (1987). · Zbl 0642.60062
[168] S. M. Sagitov, ?A criterion for the existence of a limit for the average number of particles in a critical branching process,?Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat. Nauk, No. 3, 33?40 (1988).
[169] S. M. Sagitov, ?Limit behavior of reduced critical branching processes,?Dokl. Akad. Nauk SSSR,303, No. 1, 47?49 (1988). · Zbl 0683.60060
[170] S. M. Sagitov, ?A new limit theorem for reduced critical branching processes.?Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat. Nauk, No. 3, 33?36 (1989).
[171] S. M. Sagitov, ?A multidimensional critical branching process generated by a large number of particles of one type.?Teor. Veroyatn. Primen.,35, No. 1, 98?109 (1990). · Zbl 0719.60090
[172] R. M. Salakhitdinov, ?An estimate for the rate of convergence in a limit theorem for a critical process with immigration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 5, 15?18 (1986).
[173] B. A. Sevastyanov, ?Theory of Branching Processes.? In:Itogi Nauki i Tekhmki, Ser. Teor. Veroyatn. Mat. Statist. Teor. Kibern., 5?46, VINITI (1968).
[174] B. A. Sevastyanov, ?Branching processes bounded from below.?Dokl. Akad. Nauk SSSR,238, No. 4, 811?813 (1978). · Zbl 0891.60082
[175] B. A. Sevastyanov, ?Branching processes with particle interaction.? In:Abstracts of 3th World Vilnius Conf. on Probab. Theory and Math. Statist., 139?140, Vilnius (1981).
[176] B. A. Sevastyanov, ?Investigation of branching processes at the Moscow State University probability chair.?Teor. Veroyatn. Pnmen.,34, No. 1, 231?236 (1989).
[177] B. A. Sevastyanov and A. M. Zubkov, ?Controlled branching processes,?Teor. Veroyatn. Primen.,19, No. 1, 15?25 (1974).
[178] B. A. Sevastyanov and A. V. Kalinkin, ?Branching stochastic processes with particle interaction,?Dokl. Akad. Nauk SSSR,264, No. 2, 306?308 (1982). · Zbl 0505.92016
[179] E. V. Sernova, ?Transition phenomena in reduced Bellman-Harris branching processes.? In:Stochastic Processes and Their Applications, 69?73. Moscow (1989).
[180] A. V. Skorokhod, ?Systems of interacting multiplying particles.?Tr. Tbiliss. Mat. Inst. Akad. Nauk GrSSR,92, 46?55 (1989).
[181] D. D. Scott, ?Asymptotic result for a Galton-Watson process without constraints for a supercritical case.? In:Proc. of the 1st World Congress of the Bernoulli Society, Issue I. 149?152, (Tashkent, 1986), VNU. Sci. Press, Utrecht (1987).
[182] Yasin Makhmud Takha, ?Transition phenomena for branching migration processes,?Dokl. Akad. Nauk SSSR, No. 7, 6?8 (1989). · Zbl 0695.60083
[183] V. A. Topchii, ?Asymptotic behavior of the probability of nonextinction of critical general branching processes without the second moment in the number of descendants,?Tr. Mat. Inst. SO Akad. Nauk SSSR, No. 3, 181?197 (1984).
[184] V. A. Topchii, ?Conditions of validity of Holte’s theorem for the nonextinction probability of general critical branching processes.? In:Markov Stochastic Processes and Their Applications in Queueing Theory, 22?24, Saratov (1985).
[185] V. A. Topchii, ?Properties of the probability of nonextinction of general critical branching processes under weak constraints,?Sib. Mat. Zh.,28, No. 5, 178?192 (1987). · Zbl 0624.30024 · doi:10.1007/BF00970862
[186] V. A. Topchii, ?Generalization of results for the nonextinction probability of general branching processes.? In:Stochastic Models and Inform. Systems, 143?179, Novosibirsk (1987).
[187] V. A. Topchii, ?Moderate deviations for the total number of particles in critical branching processes,?Teor. Veroyatn. Primen.,33, No. 2, 406?409 (1988). · Zbl 0661.60104
[188] V. A. Topchii, ?Properties of the total number of particles on degenerate trajectories of branching processes,?Sib. Mat. Zh.,29, No. 6, 135?143 (1988).
[189] V. A. Topchii, ?Limit theorems for critical general branching processes with long-living particles.? In:Stochastic and Deterministic Models of Complex Systems, 114?153, Vychisl. Tsentr. SO Akad. Nauk SSSR., Novosibirsk (1988).
[190] W. Feller,An Introduction to Probability Theory and Its Applications,2, Mir Publ., Moscow [Russian translation] (1984). · Zbl 0598.60003
[191] Sh. K. Formanov and S. V. Kaverin, ?Local limit theorems for a critical Galton-Watson process with migration,?Dokl. Akad. Nauk SSSR. Ser. Fiz.-Mat. Nauk, No. 10, 5?7 (1984). · Zbl 0569.60083
[192] Sh. K. Formanov and S. V. Kaverin, ?Markov branching process with emigration. I,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 5, 23?28 (1986).
[193] Sh. K. Formanov and S. V. Kaverin, ?Markov branching process with emigration. II,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 36?41 (1987).
[194] Sh. K. Formanov and S. V. Kaverin, ?Branching processes withn types of particles and with migration.? In:Probability Models and Mathematical Statistics, 147?154, Fan, Tashkent (1987). · Zbl 0707.60075
[195] Sh. K. Formanov and Yasin Mukhmud Takha, ?Limit theorems for life periods of critical Galton-Watson branching processes with migration,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 1, 40?44 (1989).
[196] T. A. Formanova, ?Limit theorems for critical branching processes with state-dependent immigration. I.?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. N auk, No. 6, 24?29 (1984).
[197] T. A. Formanova, ?Limit theorems for critical branching processes with state-dependent immigration. II,?Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, No. 3, 36?41 (1985).
[198] T. A. Formanova, ?Limit theorems for critical branching processes with immigration depending on several states.? In:Mathematical Analysis and Probability Theory, 64?74, Tashkent State Univ., Tashkent (1985). · Zbl 0602.60076
[199] T. A. Formanova, ?Asymptotic properties of branching random processes with state-dependent immigration,? In:Mathematical Analysis and Probability Theory, Manuscript, Dep. VINITI, No. 4956-B (1986).
[200] R. H. Khairullin, ?On the statistics of Galton-Watson processes with several types of particles.? In:Investigations in Applied Mathematics, No. 16, 81?97, Kazan (1989).
[201] L. V. Khan, ?Limit theorems for a Galton-Watson branching process with migration,?Sib. Mat. Zh.,21. No. 2. 183?194 (1980). · Zbl 0436.60059
[202] L. V. Khan, ?Estimates of the rate of convergence in limit theorems for a branching migration process.? Manuscript, Dep. VINITI, No. 1222-81 (1981).
[203] L. V. Khan, ?Asymptotic behavior of a branching process with state-dependent immigration.? In:Functional Analysis, Differential Equations and Their Applications, 60?63, Alma-Ata (1987).
[204] L. V. Khan, ?Asymptotic behavior of a supercritical branching migration process.? Manuscript, Dep. VINITI, No. 2355-Ka88 (1988).
[205] V. I. Sherstnev, ?Asymptotics of the probability of branching processes with immigration and several types of particles hitting zero.? In:Probability Theory of Random Processes and Functional Analysis, 84?86, Moscow (1985).
[206] V. I. Sherstnev, ?Transition phenomena for final probabilities of branching processes,?Teor. Veroyatn. Primen.,31 No. 1, 111?117 (1986). · Zbl 0594.60084
[207] V. M. Shurenkov, ?Limit theorems for branching processes with immigration controlled by a finite Markov chain,?Dokl. Akad. Nauk SSSR,207, No. 3, 554?556 (1972). · Zbl 0285.60069
[208] V. M. Shurenkov, ?Some limit theorems for branching vector processes with continuous state space,?Dokl. Akad. Nauk SSSR,207, No. 2, 304?305 (1972). · Zbl 0285.60068
[209] V. M. Shurenkov, ?Note on asymptotic behavior of branching vector processes with continuous state space.? In:Teor. Veroyatn. Mat. Statist., No. 8, 169?172, Kiev (1973).
[210] V. M. Shurenkov, ?Some limit theorems for branching processes with continuous state space.? In:Teor. Veroyatn. Mat. Statist., No. 9, 167?172, Kiev (1973).
[211] A. P. Yurachkovskii, ?Diffusion approximation of inhomogeneous branching processes that are asymptotically critical in a scheme of series.? Manuscript, Dep. VINITI, No. 1036Yk-85 (1985).
[212] A. P. Yurachkovskii, ?Convergence of inhomogeneous branching processes that are asymptotically critical in a scheme of series to processes of diffusion type.? In:Teor. Veroyatn. Mat. Statist., No. 36, 127?135, Kiev (1987).
[213] A. L. Yakymiv, ?Two limit theorems for critical Bellman-Harris branching processes,?Mat. Zametki,36, No. 1, 109?116 (1984).
[214] A. L. Yakymiv, ?Asymptotic properties of subcritical and supercritical reduced branching processes,?Teor. Veroyatn. Primen.,30, No. 1, 183?188 (1985). · Zbl 0569.60085
[215] A. L. Yakymiv, ?Reduced branching processes with several particle types.? In:Probability Processes and Their Applications, 24?31, Moscow (1984).
[216] A. L. Yakymiv, ?Asymptotics of the probability of nonextinction of critical Bellman-Harris branching processes,?Tr. Mat. Inst. Akad. Nauk SSSR,177, 177?205 (1986). · Zbl 0607.60075
[217] N. M. Yanev, ?Conditions for degeneracy of ?-branching processes with random ?,?Teor. Veroyatn. Primen.,20, No. 2, 433?440 (1975).
[218] N. M. Yanev, ?Controlled branching processes in a random environment,?Math. Balkan., No. 7, 137?156 (1977). · Zbl 0482.60079
[219] N. M. Yanev, ?Branching stochastic structures.? In:Mathematics and Mathematical Education. Proc. 14th Conf. of Bulgar. Math. Union, (Sunny Beach, 1986), 171?184, Bulgar. Akad. Nauk. Sofia: (1985). · Zbl 0593.60086
[220] N. M. Yanev, ?Limit theorems for estimates of individual characteristics in a Galton-Watson process,?Serdica,12, No. 2, 134?142 (1986). · Zbl 0608.62100
[221] N. M. Yanev, ?Estimates of variance in a subcritical branching process with immigration,?Annuaire Univ. Sofia Fac. Math. Mec., (1976/77),71, No. 2, 39?44 (1986).
[222] N. M. Yanev, V. A. Vatutin, and K. V. Mitov, ?Critical migration branching processes with an absorbing barrier at zero.? In:Mathematics and Mathematical Education. Proc. 15th Conf. of Bulgar. Math. Union (Sunny Beach, 1986), 511?517, Bulgar. Akad. Nauk, Sofia (1986). · Zbl 0607.60076
[223] N. M. Yanev and K. Mitov, ?Controlled branching processes with infinite expectation.? In:Mathematics and Mathematical Education. Proc. 9th Conf. of Bulgar. Math. Union, 182?186, Bulgar. Akad. Na.uk, Sofia. (1980). · Zbl 0572.60086
[224] N. M. Yanev and S. St. Chukova, ?Limit theorems for estimates of variances in a branching process with immigration,?Serdica,12, No. 2, 143?153 (1986).
[225] S. R. Adke, ?A birth, death and migration process,?J. Appl. Probab.,6, No. 3, 687?691 (1969). · doi:10.1017/S0021900200026723
[226] A. Agresti, ?Bounds on the extinction time distribution of a. branching processes,?J. Appl. Probab.,6, No. 2, 332?335 (1974). · Zbl 0293.60077
[227] A. Agresti, ?On the extinction times of varying and random environment branching processes,?J. Appl. Probab.,12, No. 1, 39?46 (1975). · Zbl 0306.60052 · doi:10.1017/S0021900200033076
[228] A. A. Alzaid. C. R. Rao, and D. N. Shanbhag, ?An extinction of Spitzer’s integral representation theorem with an application,?Ann. Probab.,15, No. 3, 1210?1216 (1987). · Zbl 0626.60080 · doi:10.1214/aop/1176992092
[229] N. Arató, ?On the speed of convergence for critical Galton-Watson processes,?Stud. Sci. Math. Hung.,24, No. 2?3, 269?275 (1989).
[230] S. Asmussen and H. Hering, ?Strong limit theorems for general supercritical branching processes with applications to branching diffusions,?Z. Wahrschein. Verw. Geb.,36, No. 3, 195?242 (1977). · Zbl 0325.60081 · doi:10.1007/BF00532545
[231] S. Asmussen and N. Kaplan, ?Branching random walks. I,?Stochast. Process. Appl.,4, No. 1, 1?13 (1976). · Zbl 0317.60034 · doi:10.1016/0304-4149(76)90022-3
[232] K. B. Athreya, ?Discounted branching random walks,?Adv. Appl. Probab.,17, No. 1, 53?66 (1985). · doi:10.1017/S0001867800014658
[233] K. B. Athreya, ?On the maximum sequence in a critical branching process,?Ann. Probab.,16, No. 2. 502?507 (1988). · Zbl 0643.60063 · doi:10.1214/aop/1176991770
[234] K. B. Athreya. and N. Kaplan, ?Limit theorems for a branching process with disasters,?J. Appl. Probab.,13, No. 3, 466?475 (1976). · Zbl 0363.60067 · doi:10.1017/S0021900200104012
[235] K. B. Athreya and S. Karlin, ?Branching processes with random environments.?Bull. Amer. Math. Soc.,76, No. 4, 865?870 (1970). · Zbl 0209.19302 · doi:10.1090/S0002-9904-1970-12589-7
[236] K. B. Athreya and S. Karlin, ?On branching processes with random environments, I. Extinction probabilities,?Ann. Math. Stat.,42, No. 5, 1499?1520 (1971). · Zbl 0228.60032 · doi:10.1214/aoms/1177693150
[237] K. B. Athreya and S. Karlin, ?Branching processes with random environments, II. Limit theorems,?Ann. Math. Stat.,42, No. 6, 1843?1858 (1971). · Zbl 0228.60033 · doi:10.1214/aoms/1177693051
[238] K. B. Athreya and P. Ney, ?Limit theorems for the means of branching random walks.? In:Trans. 6th Prague Conf. Inform. Theory, Statist. Decis. Fund., Random Proces., 63?72, Prague, 1971, Prague (1973). · Zbl 0282.60051
[239] J. H. Bagley, ?The existence of moments of the conditioned limit of the subcritical Grump-Mode-Jagers branching process,?Stochast. Process. Appl.,20, No. 2, 333?341 (1985). · Zbl 0576.60079 · doi:10.1016/0304-4149(85)90220-0
[240] J. H. Bagley, ?On the asymptotic properties of a supercritical bisexual branching process,?J. Appl. Probab.,23, No. 3, 820?826 (1986). · Zbl 0608.60078 · doi:10.1017/S0021900200111969
[241] J. H. Bagley, ?On the almost sure convergence of controlled branching processes,?J. Appl. Probab.,23, No. 3, 827?831 (1986). · Zbl 0608.60079 · doi:10.1017/S0021900200111970
[242] A. D. Barbour, ?Second order limit theorems for the Markov branching process in random environments,?Stochast. Process. Appl.,4, No. 1, 33?40 (1976). · Zbl 0317.60036 · doi:10.1016/0304-4149(76)90024-7
[243] N. Becker, ?Estimation for discrete time branching processes with application to epidemics,?Biometrics,33, No. 3, 515?522 (1977). · Zbl 0371.92026 · doi:10.2307/2529366
[244] M. C. Bhattacharjee, ?The time to extinction of branching processes and log-convexity: I,?Prob. Eng. Inf. Sci.,I, 265?278 (1987). · Zbl 1133.60348 · doi:10.1017/S0269964800000048
[245] J. D. Biggins, ?Martingale convergence in the branching random walk,?J. Appl. Probab.,14, No. 1, 25?37 (1977). · Zbl 0356.60053 · doi:10.1017/S0021900200104644
[246] J. D. Biggins, ?Chernoff’s theorem in the branching random walk,?J. Appl. Probab.,14, No. 3, 630 -636 (1977). · Zbl 0373.60090 · doi:10.1017/S0021900200025900
[247] I. D. Biggins, ?The asymptotic shape of the branching random walk.?Adv. Appl. Probab.,10, No. L 62?84 (1978). · Zbl 0383.60078 · doi:10.1017/S0001867800029487
[248] J. D. Biggins, ?Growth rates in the branching random walk,?Z. Wahrschein. Verw. Geb.,48, No. 1, 17?34 (1979). · Zbl 0387.60092 · doi:10.1007/BF00534879
[249] J. D. Biggins, ?Spatial spread in branching processes,?Led. Notes Biomath.,38, 57?67 (1980). · doi:10.1007/978-3-642-61850-5_6
[250] J. D. Biggins, ?Limiting point processes in the branching random walk.?Z. Wahrschein. Verw. Geb.,55, No. 3, 297?303 (1987). · Zbl 0447.60065 · doi:10.1007/BF00532121
[251] J. D. Biggins and T. Götz, ?Expected population size in the generation-dependent branching process,?J. Appl. Probab. 24, No. 2, 304?314 (1987). · Zbl 0626.60081 · doi:10.1017/S0021900200030953
[252] J. D. Biggins and D. R. Grey, ?Continuity of limit random variables in the branching random walk.?J. Appl. Probab.,16, No. 4, 740?749 (1979). · Zbl 0425.60069 · doi:10.1017/S0021900200033441
[253] N. H. Bingham, ?Continuous branching processes and spectral positivity,?Stochast. Process. Appl.,4, No. 3, 217?242 (1976). · Zbl 0338.60051 · doi:10.1016/0304-4149(76)90011-9
[254] N. H. Bingham, ?On the limit of a supercritical branching process,?J. Appl Probab.,25 A, 215?228 (1988). · Zbl 0669.60078 · doi:10.1017/S0021900200040377
[255] N. H. Bingham, ?Tauberian theorems in probability theory,?Led. Notes Math.,1379, 6?20 (1989). · doi:10.1007/BFb0087841
[256] M. D. Bramson, ?Maximal displacement of branching Brownian motion,?Commun, Pure Appl. Math.,31, No. 5, 531?581 (1978). · Zbl 0361.60052 · doi:10.1002/cpa.3160310502
[257] AI. D. Bramson, ?Minimal displacement of branching random walk,?Z. Wahrschein. Verw. Geb.,45, No. 2, 89?108 (1978). · Zbl 0373.60089 · doi:10.1007/BF00715186
[258] P. Broberg, ?A note on the extinction probability of branching populations,?Scand. J. Statist. Theory Appl.,14, No. 2, 125?129 (1987). · Zbl 0625.60102
[259] P. Broberg, ?Critical branching process populations with reproductive sibling correlations,?Stochast. Process. Appl.,30, No. 1, 133?147 (1988). · Zbl 0657.60109 · doi:10.1016/0304-4149(88)90080-4
[260] F. T. Bruss, ?Branching processes with random absorbing processes,?J. Appl. Probab.,15, No. 1, 54?64 (1978). · Zbl 0381.60066
[261] F. T. Bruss, ?A counterpart of the Borel-Cantelli lemma,?J. Appl. Probab.,17, No. 4, 1094?1101 (1980). · Zbl 0443.60002 · doi:10.1017/S0021900200097394
[262] F. T. Bruss, ?A note on extinction criteria for bisexual Galton-Watson processes,?J. Appl. Probab.,21, No. 4, 915?919 (1984). · Zbl 0568.60073 · doi:10.1017/S0021900200037608
[263] P. G. Buckholtz, J. M. Hartwick, K. Nanthi, and M. T. Wasan, ?Some results on first order stochastic models and estimation for diffusion approximation of the multi-type Galton-Watson process.?Stochast. Anal. Appl.,1, No. 2, 163?195 (1983). · Zbl 0551.60089 · doi:10.1080/07362998308809010
[264] W. J. Bühler and P. S. Puri, ?The linear birth and death process under the influence of independently occurring disasters,?Probab. Theory Relat. Fields,83, No. 1?2, 59?66 (1989). · Zbl 0708.60078 · doi:10.1007/BF00333143
[265] M. L. Carvalho and D. Muller, ?Asymptotic bilateral tests for branching processes,?Scand. J. Statist. Theory Appl.,11, No. 1, 39?44 (1984). · Zbl 0539.62095
[266] L. L. Cavalli-Sforza and A. W. F. Edwards, ?Estimation procedures for evolutionary branching processes,?Bull. Internat. Statist. Inst.,41, No. 2, 803?807 (1965).
[267] K. S. Chandra and P. Koteeswaran, ?Influence on superimposed subcritical Galton-Watson process with immigration,?Ann. Inst. Statist. Math.,38, No. 2, 311?313 (1986). · Zbl 0602.60077 · doi:10.1007/BF02482519
[268] B. Chauvin, ?Arbres et processus de Bellman-Harris,?Ann. Inst. H. Poincare. Probab. Statist.,22, No. 2, 209?232 (1986). · Zbl 0597.60078
[269] B. Chauvin, ?Sur la proprieté de branchement.?Ann. Inst. H. Poincare. Probab, Statist.,22, No. 2, 233?236 (1986).
[270] B. Chauvin and A. Rouault, ?Etude de l’équation KKP et du branchement, brownien en zones souscritique et critique,?C. r. Acad. Sci., Ser. I,304, No. 1, 19?32 (1987). · Zbl 0602.60075
[271] Y. S. Chow and K. F. Yu, ?Some limit theorems for a subcritical branching process with immigration,?J. Appl. Probab.,21, No. 1, 50?57 (1984). · Zbl 0532.60082
[272] J. D. Church, ?On infinite composition of products of probability generating functions,?Z. Wahrschein. Verw. Geb.,19, No. 3, 243?256 (1971). · Zbl 0212.50203 · doi:10.1007/BF00534112
[273] P. Clifford, ?On the age structure of cell-size-dependent branching processes.? In:Trans. 7th Prague Conf. Inform. Theory, Statist. Decis. Funct., Random Process. and 1974 Eur. Meet, Statist., Prague, 1974,A, 97?101, Prague (1977).
[274] P. Clifford and A Sudbury, ?The linear cell-size-dependent branching process.?,J. Appl. Probab.,9, No. 4, 687?696 (1972). · Zbl 0271.60092 · doi:10.1017/S0021900200036081
[275] P. Clifford and A. Sudbury, ?Cell-size-dependent branching processes.? In:Progr. Statist.,I, 153?156. Amsterdam-London (1974).
[276] J. Coffey and D. Tanny, ?A necessary and sufficient condition for noncertain extinction of a branching process in a random environment (BR BPRE),?Stochast. Process. Appl.,16, No. 2, 189?197 (1984). · Zbl 0523.60080 · doi:10.1016/0304-4149(84)90019-X
[277] H. Cohn, ?A martingale approach to supercritical (CMJ) branching processes,?Ann. Probab.,13, No. 4, 1179?1191 (1985). · Zbl 0587.60086 · doi:10.1214/aop/1176992803
[278] H. Cohn, ?Multi-type finite mean supercritical age-dependent branching processes,?J. Appl. Probab.,26, No. 2, 398?403 (1989). · Zbl 0676.60078 · doi:10.1017/S0021900200027388
[279] H. Cohn, ?On the growth of the multi-type supercritical branching process in a random environment,?Ann. Probab.,17, No. 3, 1118?1123 (1989). · Zbl 0693.60072 · doi:10.1214/aop/1176991259
[280] H. Cohn and H. Hering, ?Inhomogeneous Markov branching processes: supercritical case,?Stochast. Process. Appl.,14, No. 1, 79?91 (1983). · Zbl 0493.60083 · doi:10.1016/0304-4149(83)90048-0
[281] H. Cohn and F. Klebaner, ?Geometric rate of growth in Markov chains with applications to population-size-dependent models with dependent offspring,?Stochast. Anal. Appl.,4, No. 3, 283?307 (1986). · Zbl 0606.60071 · doi:10.1080/07362998608809091
[282] H. E. Conner, ?Asymptotic behavior of averaging-processes for a branching process of restricted Brownian particles,?J. Math. Anal. Appl.,20, No. 3, 464?479 (1967). · Zbl 0247.60046 · doi:10.1016/0022-247X(67)90074-1
[283] R. Cowan, ?Branching process results in terms of moments of the generation-time distribution,?Biometrics,41, No. 3, 681?689 (1985). · doi:10.2307/2531288
[284] K. S. Crump and C. J. Mode, ?An age-dependent branching process with correlations among sister cells,?J. Appl. Probab.,6, No. 1, 205?210 (1969). · Zbl 0225.60039 · doi:10.1017/S0021900200032654
[285] D. J. Daley, ?Extinction conditions for certain bisexual Galton-Watson branching processes,?Z. Wahrschein. Verw. Geb.,9, No. 4, 315?322 (1968). · Zbl 0157.46602 · doi:10.1007/BF00531755
[286] D. J. Daley, D. M. Hull, and J. M. Taylor, ?Bisexual Galton-Watson branching processes with super-critical superadditive mating functions,?J. Appl. Probab.,23, No. 3, 585?600 (1986). · Zbl 0611.60083
[287] D. A. Dawson and E. A. Perkins, ?Historical processes,?Mem. Amer. Math. Soc.,93, No. 454. 179 (1991).
[288] F. M. Dekking, ?Subcritical branching processes in a two-state random environment, and a percolation problem on trees,?J. Appl. Probab.,24, No. 4, 798?808 (1987). · Zbl 0635.60110 · doi:10.1017/S0021900200116699
[289] F. M. Dekking, ?On the survival probability of a branching process in a finite state i.i.d. environment,?Stochast. Process. Appl.,27, No. 1, 151?157 (1987). · Zbl 0634.60072 · doi:10.1016/0304-4149(87)90011-1
[290] S. R. Deshmukh, ?Maximum likelihood estimation for branching migration process,?Commun. Statist: Theory Meth.,13, No. 14, 1769?1780 (1984). · Zbl 0552.62064 · doi:10.1080/03610928408828793
[291] J. P. Dion and W. W. Esty, ?Estimation problems in branching processes with random environments.?Ann. Staust.,7, No. 3, 680?685 (1979). · Zbl 0418.62069 · doi:10.1214/aos/1176344688
[292] P. Dittrich, ?A boundary process in random environment,? Prepr. Akad. Wiss. DDR, Karl-Weier-strass Inst. Math., No. 24, 1?12 (1988).
[293] R. A. Doney, ?A note on some results of Schuh,?J. Appl. Probab.,21, No. 1, 192?196 (1984). · doi:10.1017/S0021900200024517
[294] S. D. Durham, ?An optimal branching migration process,?J. Appl. Probab.,12, No. 3, 569?573 (1975). · Zbl 0331.60056 · doi:10.1017/S0021900200048385
[295] R. Durrentt, ?Genealogy of critical branching processes,?Stochast. Process. Appl.,8, No. 1, 101?116 (1978). · Zbl 0394.60082 · doi:10.1016/0304-4149(78)90071-6
[296] R. Durrett, ?Maxima of branching random walks vs. independent random walks,?Stochast. Process. Appl.,9, No. 2, 117?135 (1979). · Zbl 0425.60020 · doi:10.1016/0304-4149(79)90024-3
[297] R. Durrett, ?Maxima of branching random walks,?Z. Wahrschein. Verw. Geb.,62, No. 2, 165?170 (1983). · Zbl 0488.60090 · doi:10.1007/BF00538794
[298] M. Dwass, ?Branching processes in simple random walk,?Proc. Amer. Math. Soc.,51, No. 2, 270?274 (1975). · Zbl 0312.60032 · doi:10.1090/S0002-9939-1975-0370775-4
[299] L. Edler, ?Strict supercritical generation-dependent Grump-Mode-Jagers branching processes,?Adv. Appl. Probab. 10, No. 4. 744?763 (1978). · Zbl 0395.60072
[300] L. Edler, ?The extinction of generations in generation-dependent Bellman-Harris branching processes with exponential lifespan.? In:Trans. 8th Prague Conf. Inform. Theory, Statist. Decis. Fund., Random Process.,A, 171?185, Prague (1978). · Zbl 0399.60077
[301] A. W. F. Edwards, ?Estimation of the branch points of a branching diffusion process,?J. Roy. Statist. Soc.,B32, No. 2, 155?164 (1970). · Zbl 0203.50801
[302] K. Enderle and H. Hering, ?Ratio limit theorems for branching Ornstein-Uhlenbeck processes,?Stochast. Process. Appl.,13, No. 1, 75?85 (1982). · Zbl 0485.60081 · doi:10.1016/0304-4149(82)90008-4
[303] K. B. Erickson, ?Rate of expansion of an inhomogemeous branching process of Brownian particles,?Z. Wahrschein. Verw. Geb.,66, No. 1, 129?140 (1984). · Zbl 0525.60083 · doi:10.1007/BF00532800
[304] I. Eshel, ?On the survival probability of a slightly advantageous mutant gene in a multi-type population: A multidimensional branching process model,?J. Math. Biol.,19, No. 2, 201?209 (1984). · Zbl 0529.92007 · doi:10.1007/BF00277746
[305] D. W. Fairweather and I. N. Shimi, ?An immigration and fragmentation stochastic process,?Math. Biosci.,9, No. 1, 93?104 (1970). · Zbl 0218.92006 · doi:10.1016/0025-5564(70)90095-7
[306] D. W. Fairweather and I. N. Shimi, ?A multi-type branching process with immigration and random environment,?Math. Biosci.,13, No. 3?4, 299?324 (1972). · Zbl 0234.60099 · doi:10.1016/0025-5564(72)90052-1
[307] D. H. Fearn, ?Supercritical age dependent branching processes with generation dependence,?Ann. Probab.,4, No. 1, 27?37 (1976). · Zbl 0329.60051 · doi:10.1214/aop/1176996178
[308] D. H. Fearn, ?Probability of extinction of critical generation-dependent Galton-Watson processes,?J. Appl. Probab.,13, No. 3, 573?577 (1976). · Zbl 0353.60082
[309] D. H. Feam, ?A fixed-point property for Galton-Watson processes with generation dependence,?J. Appl. Probab.,18, No. 2, 514?519 (1981).
[310] R. Fildes, ?An age dependent branching process with variable lifetime distribution: the generation size,?Adv. Appl. Probab.,6, No. 2, 291?308 (1974). · Zbl 0291.60040 · doi:10.1017/S0001867800045377
[311] K. Fleischman and R. Siegmund-Schultze, ?An invariance principle for reduced family trees of critical spatially homogeneous branching processes,?Serdica,4, No. 2?3, 111?134 (1978).
[312] J. H. Foster, ?A limit theorem for a, critical process with state-dependent immigration,?Ann. Math. Stat.,42, No. 5, 1773?1776 (1971). · Zbl 0245.60063 · doi:10.1214/aoms/1177693182
[313] J. H. Foster and R. T. Goettge, ?The rates of growth of the Galton-Watson process in varying environment,?J. Appl. Probab.,13, No. 1, 144?147 (1976). · Zbl 0343.60056 · doi:10.1017/S002190020004910X
[314] J. H. Foster and J. A. Williamson, ?Limit theorems for the Galton-Watson process with time-dependent immigration,?Z. Wahrschein. Verw. Geb.,20, No. 3, 227?235 (1971). · Zbl 0212.19702 · doi:10.1007/BF00534904
[315] Tetsko Fujimagari, ?Controlled Galton-Watson process and its asymptotic behavior,?Kodai Math. Semin. Repts.,27, No. 1?2, 11?18 (1976). · Zbl 0365.60084 · doi:10.2996/kmj/1138847159
[316] Tetsko Fujimagari, ?On the extinction time distribution of a branching process in varying environments,?Adv. Appl. Probab.,12, No. 2, 350?366 (1980). · Zbl 0425.60070 · doi:10.1017/S0001867800050217
[317] V. G. Gadag, ?A note on the multi-type Markov branching process,?J. Appl. Probab.,26, No. 3, 631?636 (1989). · Zbl 0694.60080 · doi:10.1017/S0021900200038225
[318] V. G. Gadag, U. V. Naik-Nimbalkar, and M. B. Rajarshi, ?Ageing properties of the time to extinction of a multi-type branching process,?Calcutta Statist. Assoc. Bull,31, No. 151?152, 181?186 (1989). · Zbl 0721.60096
[319] V. G. Gadag and M. B. Rajarshi, ?On multi-type processes based on progeny lengths of particles of a supercritical Galton-Watson process,?J. Appl. Probab.,24, No. 1. 14?24 (1987). · Zbl 0616.60080 · doi:10.1017/S0021900200030576
[320] V. G. Gadag and M. B. Rajarshi, ?Multi-type branching processes based on exact progeny lengths of particles in a Galton-Watson branching process,?J. Appl. Probab.,26, No. 1, 1?8 (1989). · Zbl 0678.60079 · doi:10.1017/S0021900200041747
[321] G. L. Ghai and E. Pollak, ?On some results for a branching bivariate branching process,?Biometrics,31, No. 3, 761?763 (1975). · Zbl 0309.60056 · doi:10.2307/2529561
[322] R. T. Goettge, ?Limit theorems for the supercritical Galton-Watson process in varying environments.?Math. Biosci.,28, No. 1?2, 171?190 (1976). · Zbl 0388.60082 · doi:10.1016/0025-5564(76)90100-0
[323] L. A. Goodman, ?How to minimize or maximize the probabilities of extinction in a. Galton-Watson process and in some related multiplicative population processes,?Ann. Math. Statist.,39, No. 5, 1700?1710 (1968). · Zbl 0279.60075 · doi:10.1214/aoms/1177698152
[324] L. G. Gorostiza, ?Asymptotics and spatial growth of branching random fields,?Led. Notes Math.,1212, 124?135 (1986). · doi:10.1007/BFb0076243
[325] L. G. Gorostiza and R. J. Griego, ?Convergence of branching transport processes to branching Brownian motion,?Stochast. Process. Appl.,8, No. 3, 269?276 (1979). · Zbl 0408.60086 · doi:10.1016/0304-4149(79)90003-6
[326] L. G. Gorostiza and A. R. Moncayo, ?Invariance principle for the spatial distributions of branching populations.? In:Branching Processes, 159?175. New York-Basel (1978).
[327] T. Götz, ?Generation-dependent, branching processes with immigration: convergence of distributions,?Lect. Notes Math.,1212, 136?144 (1986). · doi:10.1007/BFb0076244
[328] D. R. Grey, ?Asymptotic behavior of continuous time, continuous state-space branching processes,?J. Appl. Probab.,11, No. 4, 669?677 (1974). · Zbl 0301.60060 · doi:10.1017/S0021900200118108
[329] D. R. Grey, ?Supercritical branching processes with density independent catastrophes,?Math. Proc. Cambridge Philos. Soc.,104, No. 2, 413?416 (1988). · Zbl 0657.60108 · doi:10.1017/S0305004100065579
[330] D. R. Grey, ?A note on explosiveness of Markov branching processes,?Adv. Appl. Probab.,21, No. 1, 226?228 (1989). · Zbl 0678.60077 · doi:10.1017/S0001867800017274
[331] W. S. Griffith, R. J. Kryscio, and P. Purdue, ?A stochastic model of particle shattering,?Adv. Appl. Probab.,16, No. 1. 70?87 (1984). · Zbl 0528.60084 · doi:10.1017/S0001867800022357
[332] R. S. Griffiths and A. G. Pakes, ?An infinite-alleles version of the simple branching processes,?Adv. Appl. Probab.,20, No. 3, 489?524 (1988). · Zbl 0653.92009 · doi:10.1017/S0001867800018127
[333] G. R. Grimmett, ?A linear cell-size dependent branching process,?Stochast. Process. Appl.,10, No. 1, 105?113 (1980). · Zbl 0429.60082 · doi:10.1016/0304-4149(80)90009-5
[334] D. P. Harrington, ?Almost sure convergence of continuous time branching processes,?Stochast. Process. Appl.,6, No. 3, 317?322 (1978). · Zbl 0379.60080 · doi:10.1016/0304-4149(78)90028-5
[335] D. P. Harrington and T. R. Fleming, ?Estimation for branching processes with varying and random environments,?Math. Biosci.,39, No. 3?4, 255?271 (1978). · Zbl 0388.60084 · doi:10.1016/0025-5564(78)90056-1
[336] D. P. Harrington and T. R. Fleming, ?Statistical properties of estimators for continuous time Markov branching processes with varying and random environments,?Math. Biosci.,58, No. 1, 111?122 (1982). · Zbl 0516.62084 · doi:10.1016/0025-5564(82)90054-2
[337] H. Hering, ?Limit theorem for critical branching diffusion processes with absorbing barriers,?Math. Biosci.,19, No. 3?4, 355?370 (1974). · Zbl 0282.60053 · doi:10.1016/0025-5564(74)90049-2
[338] C. C. Heyde, ?On Fibonacci (or lagged Bienayme-Galton-Watson) branching processes,?J. Appl. Probab.,18, No. 3, 583?591 (1981). · Zbl 0478.60087 · doi:10.1017/S0021900200098387
[339] J. Holzheimer, ?A note on inhomogeneous continuous-state branching processes,?Zastosow. Mat.,19, No. 2, 189?193 (1987). · Zbl 0628.60090
[340] J. Holzheimer, ??-branching processes in a random environment,?Zastosow. Mat. 18, No. 3, 351?358 (1984).
[341] J. Holzheimer, ?On moments for branching processes.?Zastosow. Mat.,19, No. 2, 181?188 (1987). · Zbl 0628.60089
[342] J. Holxheimer, ?A limit theorem for a, critical branching process with migration stopped at zero,?Zesz. Nauk. Mat., WSP Opolu.,26, 21?26 (1988).
[343] R. Höpfner, ?On some classes of population-size dependent Galton-Watson processes,?J. Appl. Probab.,22, No. 1, 25?26 (1988).
[344] R. Höpfner, ?A note on the probability of extinction in a class of population-size-dependent Galton-Watson processes,?J. Appl. Probab.,22, No. 4, 920?925 (1985). · Zbl 0581.60069 · doi:10.1017/S0021900200108150
[345] R. Höpfner, ?Some results on population-size-dependent Galton-Watson processes.?J. Appl. Probab.,23, No. 2, 297?306 (1986). · Zbl 0598.60089 · doi:10.1017/S0021900200029612
[346] F. M. Hoppe, ?A note on Markov branching processes.?Adv. Appl. Probab.,17, No. 2. 463?464 (1985). · Zbl 0565.60066 · doi:10.1017/S0001867800015081
[347] R. M. Huggins, ?Laws of the iterated logarithm for time changed Brownian motion with an application to branching processes,?Ann. Probab.,13, No. 4, 1148?1156 (1985). · Zbl 0582.60039 · doi:10.1214/aop/1176992801
[348] D. M. Hull, ?A necessary condition for extinction in those bisexual Galton-Watson branching processes govemed by superadditive mating functions,?J. Appl. Probab.,19, No. 4. 847?850 (1982). · Zbl 0501.60086 · doi:10.1017/S0021900200023184
[349] D. M. Hull, ?Conditions for extinction in certain bisexual Galton-Watson branching processes,?J. Appl. Probab.,21, No. 1. 414?418 (1984). · Zbl 0541.60086
[350] Nobuyki Ikeda and Shinzo Watanabe, ?On uniqueness and non-uniqueness of solution for a class of non-linear equations and the explosion problem for branching processes,?J. Fac. Sci. Univ. Tokyo, Ser. IA. 17. No. 1?2. 187?214 (1970).
[351] B. G. Ivanoff and E. Seneta, ?The critical branching process with immigration stopped at zero,?,J. Appl. Probab.,22, No. 1, 223?227 (1985). · Zbl 0563.60078 · doi:10.1017/S0021900200029156
[352] M. E. Jacobson, ?Computation of extinction probabilities for the Bellman-Harris branching process,?Math. Diosci.,77, No. 1?2, 173?177 (1985). · Zbl 0575.60085
[353] P. Jagers, ?Galton-Watson processes in varying environments,?J. Appl. Probab.,11, No. 1, 174?178 (1974). · Zbl 0277.60061 · doi:10.1017/S0021900200036512
[354] P. Jagers, ?The stable asymptotic structure of growing branching populations.? In:Proc. 7th Conf. Probab. Theory, Brasov, Aug. 29?Sept. 4, 1982, 205?210, Bucuresti (1984). · Zbl 0593.60082
[355] P. Jagers and O. Nerman, ?Limit theorems for sums determined by branching and other exponentially growing processes.?Stochast. Process. Appl.,17, No. 1, 47?71 (1984). · Zbl 0532.60081 · doi:10.1016/0304-4149(84)90311-9
[356] P. Jagers and O. Nerman, ?The growth and composition of branching populations,?Adv. Appl. Probab.,16, No. 2, 221?259 (1985). · Zbl 0535.60075 · doi:10.1017/S0001867800022515
[357] P. Jagers and O. Nerman, ?Branching processes in periodically varying environment,?Ann. Probab.,13, No. 1, 254?268 (1985). · Zbl 0557.60072 · doi:10.1214/aop/1176993079
[358] S. Janson, ?Limit theorems for certain branching random walks on compact groups and homogeneous space,?Ann. Probab.,11, No. 4, 909?930 (1983). · Zbl 0544.60022 · doi:10.1214/aop/1176993441
[359] M. Ji?ina, ?The asymptotic behavior of branching stochastic processes,?Czechosl. Math. J.,7, No. 1, 130?153 (1957).
[360] M. Ji?ina, ?’Stochastic branching processes with continuous state space,?Czechosl. Math. J.,8, No. 2, 292?313 (1958).
[361] M. Jifina, ?Extinction of non-homogeneous Galton-Watson processes,?J. Appl. Probab.,13, No. 1, 132?137 (1976). · doi:10.1017/S0021900200049081
[362] A. J. Joffe and M. Metivier, ?Weak convergence of sequences of semimartingales with applications to multi-type branching processes,?Adv. Appl. Probab.,18, No. 1, 20?65 (1986). · doi:10.1017/S0001867800015585
[363] A. Joffe and W. A. O’N. Waugh, ?The kin number problem in a multi-type Galton-Watson population,?J. Appl. Probab.,22, No. 1, 37?47 (1985). · Zbl 0559.60067
[364] K. Kämmerle and H.-J. Schuh, ?The maximum in critical Galton-Watson and birth and death processes,?J. Appl. Probab.,23, No. 3, 601?613 (1986). · Zbl 0605.60070
[365] Tetsuo Kaneko, ?The immigration between branching processes,?Sci. Repts Niigata Univ., No. 12, 47?53 (1975).
[366] Tetsuo Kaneko, ?On the limit behavior of some branching processes with immigration,?Sci. Repts. Niigata Univ., A, No. 17, 43?48 (1980).
[367] N. Kaplan, ?A theorem on compositions of random probability generating functions and applications to branching processes with random environments,?J. Appl. Probab.,9, No. 1, 1?12 (1972). · Zbl 0228.60035 · doi:10.1017/S0021900200094638
[368] N. Kaplan, ?A continuous time Markov branching model with random environments,?Adv. Appl. Probab.,5, No. 1, 37?54 (1973). · Zbl 0263.60037 · doi:10.1017/S0001867800038945
[369] N. Kaplan, ?Some results about multidimensional branching processes with random environments,?Ann. Probab.,2, No. 3, 441?455 (1974). · Zbl 0293.60078 · doi:10.1214/aop/1176996659
[370] N. Kaplan, ?A note on the supercritical branching processes with random environments,?Ann. Probab.,2, No. 3, 509?514 (1974). · Zbl 0293.60079 · doi:10.1214/aop/1176996668
[371] N. Kaplan and S. Asmussen, ?Branching random walks, II,?Stochast. Process. Appl.,4, No. 1. 15?31 (1976). · Zbl 0322.60065 · doi:10.1016/0304-4149(76)90023-5
[372] N. Kaplan, A Sudbury, and T. S. Nilsen, ?A branching process with disasters.?J. Appl. Probab.,12, No. 1, 47?59 (1975). · Zbl 0326.60101 · doi:10.1017/S0021900200033088
[373] S. Karlin and N. Kaplan, ?Criteria for extinction of certain population growth processes with interacting types,?Adv. Appl. Probab.,5, No. 2, 183?199 (1973). · Zbl 0263.60038 · doi:10.1017/S0001867800039136
[374] S. Karlin and J. McGregor, ?Embeddability of discrete time simple branching processes,?Trans. Amer. Math. Soc.,132, No. 1, 115?136 (1968). · Zbl 0159.46102 · doi:10.1090/S0002-9947-1968-0222966-1
[375] S. Karlin and S. Tavaré, ?Detecting particular genotypes in populations under nonrandom mating,?Math. Biosci.,59, No. 1, 57?75 (1982). · Zbl 0503.92015 · doi:10.1016/0025-5564(82)90109-2
[376] Kiyoshi Kawazu and Shinzo Watanabe, ?Branching processes with immigration and related limit theorems,?Teor. Veroyatn. Primen.,16, No. 1, 34?51 (1971). · Zbl 0242.60034
[377] N. Keiding and J. E. Nielsen, ?The growth of supercritical branching processes with random environments,?Ann. Probab.,1, No. 6, 1065?1067 (1973). · Zbl 0272.60057 · doi:10.1214/aop/1176996814
[378] N. Keiding and J. E. Nielsen, ?Branching processes with varying and random geometric offspring distributions,?J. Appl. Probab.,12, No. 1, 135?141 (1975). · Zbl 0303.60076 · doi:10.1017/S0021900200033179
[379] G. Keller, G. Kerstirig, and U. Rösler, ?On the asymptotic behavior of discrete time stochastic growth processes,?Ann. Probab.,15, No. 1, 305?343 (1987). · Zbl 0616.60079 · doi:10.1214/aop/1176992272
[380] G. Kersting, ?On recurrence and transience of growth models,?J. Appl. Probab.,23, No. 3, 614?625 (1986). · Zbl 0611.60084 · doi:10.1017/S0021900200111787
[381] H. Kesten, ?Limit theorems for stochastic growth models. I,?Adv. Appl. Probab.,4, No. 3, 193?232 (1972). · Zbl 0266.60017 · doi:10.1017/S0001867800038325
[382] H. Kesten, ?Limit theorems for stochastic growth models. II,?Adv. Appl. Probab.,4, No. 4, 393?428 (1972). · Zbl 0294.60069 · doi:10.1017/S0001867800038532
[383] H. Kesten, ?Branching Brownian motion with absorption,?Stochast. Process. Appl.,7, No. 1, 9?47 (1978). · Zbl 0383.60077 · doi:10.1016/0304-4149(78)90035-2
[384] E. S. Key, ?Limiting distributions and regeneration times for multi-type branching processes with immigration in a random environment,?Ann. Probab.,15, No. 1, 344?353 (1987). · Zbl 0623.60090 · doi:10.1214/aop/1176992273
[385] M. Kimmel, ?An equivalence result for integral equations with application to branching processes./rdDull. Math. Biol,44, No. 1, 1?15 (1982). · Zbl 0472.60069 · doi:10.1007/BF02459415
[386] M. Kimmel, ?The point-proccess approach to a.ge- and time-dependent branching processes,?Adv. Appl. Probab.,15, No. 1, 1?20 (1983). · doi:10.1017/S0001867800020966
[387] F. C. Klebaner, ?Branching random walk in varying environments,?Adv. Appl. Probab.,14, No. 2, 359?367 (1982). · Zbl 0482.60078 · doi:10.1017/S0001867800020498
[388] F. C. Klebaner, ?Population-size-dependent branching process with linear rate of growth,?J. Appl. Probab.,20, No. 2, 242?250 (1983). · Zbl 0513.60085 · doi:10.1017/S0021900200023408
[389] F. C. Klebaner, ?On population-size-dependent branching processes,?Adv. Appl. Probab.,16, No. 1, 30?55 (1984). · Zbl 0528.60080 · doi:10.1017/S0001867800022333
[390] F. C. Klebaner, ?Geometric rate of growth in population-size-dependent branching processes,?J. Appl. Probab.,21, No. 1, 40?49 (1984). · Zbl 0544.60073 · doi:10.1017/S0021900200024359
[391] F. Klebaner, ?A limit theorem for population-size-dependent branching processes,?J. Appl. Probab.,22, No. 1. 48?57 (1985). · Zbl 0562.60092 · doi:10.1017/S0021900200029004
[392] F. Klebaner, ?Linear growth in near-critical popilation-size-dependent multi-type Galton-Watson processes,?J. Appl. Probab.,26, No. 3, 431?445 (1989). · Zbl 0682.60074
[393] F. C. Klebaner and H.-J. Schuh, ?A connection between the limit and the maximum random variable of a. branching process in varying environments,?J. Appl. Probab.,19, No. 3, 681?684 (1982). · Zbl 0493.60088 · doi:10.1017/S0021900200037189
[394] B. Klein and P. D. M. MacDonald, ?The multi-type continuous-time Markov branching process in a periodic environment;?Adv. Appl. Probab.,12, No. 1, 81?93 (1980). · Zbl 0421.60076 · doi:10.1017/S0001867800033395
[395] V. F. Kolchin, ?Branching proccesses and random mappings.? In:5th Int. Sum. Sch. Probab. Theory and Math. Statist., 128?155, Varna, 16?28 Sept., 1985: Lect. notes, Sofia (1988).
[396] P. Koteeswaran, ?Estimating the age of a Galton-Watson process with binomial offspring distribution.?Stuchast. Anal. Appl,7, No. 4. 413?423 (1989). · Zbl 0683.62042 · doi:10.1080/07362998908809191
[397] P. Kotecswaran, K. Nanthi, and K. S. Chandra, ?Some convergence theorems on a supercritical Galton-Watson process,?Ann. Inst. Statist. Math.,37, No. 3, 409?414 (1985). · Zbl 0584.60088 · doi:10.1007/BF02481109
[398] M. V. Kulkarni and A. G. Pakes, ?The total progeny of a simple branching process with state-dependent immigration,?J. Appl. Probab.,20, No. 3, 472?481 (1983). · Zbl 0525.60087 · doi:10.1017/S0021900200023743
[399] R. Kulperger, ?Parametric estimation for a simple branching diffusion process,?J. Multivar. Anal,9. No. 1. 101?115 (1979). · Zbl 0415.62063 · doi:10.1016/0047-259X(79)90069-1
[400] P. Küster, ?Generalized Markov branching processes with state-dependent offspring distribution,?Z. Wahrchein. Verw. Geb.,64, No. 4, 475?503 (1983). · Zbl 0506.60085 · doi:10.1007/BF00534952
[401] P. Küster, ?Asymptotic growth of controlled Galton-Watson processes,?Ann. Probab.,13, No. 4. 1157?1178 (1985). · Zbl 0576.60078 · doi:10.1214/aop/1176992802
[402] E. G. Kyriakidis and A. Abakuks, ?Optimal pest control through catastrophes,?J. Appl. Probab.,26, No. 4, 873?879 (1989). · doi:10.1017/S0021900200027741
[403] S. P. Lalley and T. Sellke, ?A conditional limit theorem for the frontier of a branching Brownian motion.?Ann. Probab.,15, No. 3, 1052?1061 (1987). · Zbl 0622.60085 · doi:10.1214/aop/1176992080
[404] S. P. Lalley and T. Sellke, ?Travelling waves in inhomogeneous branching Brownian motions. I,?Ann. Probab.,16, No. 3, 1051?1062 (1988). · Zbl 0692.60064 · doi:10.1214/aop/1176991677
[405] S. P. Lalley and T. Sellke, ?Travelling waves in inhomogeneous branching Brownian motions. II,?Ann. Probab. 17, No. 11, 116?127 (1989). · Zbl 0692.60064 · doi:10.1214/aop/1176991498
[406] J. Lamperti, ?Continuous sta.te branching processes,?Bull. Amer. Math. Soc.,73, No. 3, 382?386 (1967). · Zbl 0173.20103 · doi:10.1090/S0002-9904-1967-11762-2
[407] J. Lamperti, ?The limit of a, sequence of branching processes,?Z. Wahrschein. Verw. Geb.,7, No. 4, 271?288 (1967). · Zbl 0154.42603 · doi:10.1007/BF01844446
[408] J. Lamperti, ?Maximal branching processes and long-range percolation?,J. Appl. Probab.,7, No. 1, 89?98 (1970). · Zbl 0196.18801
[409] J. Lamperti, ?Remarks on maximal branching processes,?Teor. Veroyatn. Primen.,17, No. 1, 46?54 (1972).
[410] C. Laredo and A. Rouault, ?Une généralisation du paramètre de Malthus pour les processus de Crump Mode-Yagers spatiaux,?C. R. Acad. Sci., Ser. 1,293, No. 9, 481?484 (1981). · Zbl 0478.60089
[411] C. Laredo and A. Rouault, ?Grandes deviations, dynamique de populations et phénomènes malthusiens,?Ann. Inst. H. Poincaré,B19, No. 4, 323?350 (1983). · Zbl 0532.60084
[412] T.-Y. Lee, ?Some limit theorems for critical branching Bessel processes, and related semilinear differential equation,?Probab. Theory Relat. Fields,84, No. 4, 505?520 (1990). · Zbl 0685.60086 · doi:10.1007/BF01198317
[413] J. F. Le Gall, ?Marches aletoires, mouvement brownien et processus de branchement,?Lect. Notes. Math.,1372, 258?274 (1989). · doi:10.1007/BFb0083978
[414] Y. Le Yan, ?Limites projectives de processus de branchement markoviens,?C. R. Acad. Sci., Ser. 1,309, No. 6, 377?381 (1989). · Zbl 0705.60069
[415] N. Lenz, ?Convolution inverses and branching random walk.? In:Proc. 7th Conf. Probab. Theory,Brasov, Aug. 29?Sept. 4, 1982, 459?465, Bucuresti (1984). · Zbl 0593.60083
[416] B. Levikson, ?The age distribution of Markov processes,?J. Appl. Probab.,14, No. 3, 492?506 (1977). · Zbl 0389.60049 · doi:10.1017/S0021900200025730
[417] A. Liemant, K. Matthes, and A. Wakolbinger,Equilibrium Distributions of Branching Processes, Akad.-Verlag, Berlin; Kluwer, Dordrecht (1988). · Zbl 0723.60105
[418] T. Lindvall, ?Almost sure convergence of branching processes in varying and random environments,?Ann. Probab.,2, No. 2, 344?351 (1974). · Zbl 0278.60057 · doi:10.1214/aop/1176996717
[419] C. Lipow, ?Two branching models with generating functions dependent on population size,? Doct. diss., Univ. Wisc. (1971), Diss. Abstr. Int. (1972),B32, No. 8, 4733.
[420] C. Lipow, ?A branching model with population size dependence,?Adv. Appl. Probab.,7, No. 3, 495?510 (1975). · Zbl 0323.60079
[421] C. Lipow, ?Limiting diffusion for population-size dependent branching processes.?J. Appl. Probab.,14, No. 1, 14?24 (1977). · Zbl 0388.60083 · doi:10.1017/S0021900200104632
[422] H. von Lojewski and U. Prehn, ?Subcritica.l Galton-Watson processes with a countable set of types,?Math. Nachr.,126, 197?215 (1986). · Zbl 0622.60095 · doi:10.1002/mana.19861260113
[423] C. A. Macken and A. S. Perelson, ?Branching processes applied to cell surface aggregation phenomena,?Lect. Notes Biomath.,58, 1?130 (1985). · Zbl 0573.92001 · doi:10.1007/978-3-642-52115-7_1
[424] C. A. Macken and A. S. Perelson, ?Stem cell proliferation and differentiation. A multi-type branching process model,?Lect. Notes Biomath.,76. 2?121 (1988).
[425] E. Maki and P. McDunnough, ?What can or can’t be estimated in branching and related processes??Stock. Process. Appl,31, No. 2, 307?314 (1989). · Zbl 0687.62071 · doi:10.1016/0304-4149(89)90094-X
[426] E. Maki and P. McDunnough, ?Sampling a branching tree,?Stock. Process. Appl.,31, No. 2, 283?305 (1989). · Zbl 0687.62070 · doi:10.1016/0304-4149(89)90093-8
[427] C. A. Martin, ?The multi-type branching process with random environment.?Doct. Diss. Raleigh,N. C. State Univ. (1970),Diss. Abstr. Int. (1971),B31, No. 11.-6754.
[428] B. Mellein, ?Green function behavior of critical Galton-Watson processes with immigration,?Bol. Soc.-Bras. Mat.,14, No. 1, 17?25 (1983). · Zbl 0566.60082 · doi:10.1007/BF02584742
[429] M. Mills and E. Seneta, ?Goodness-of-fit for a branching process with immigration using partial autocorrelations,?Stochast. Process. Appl.,33, No. 1, 151?161 (1989). · Zbl 0682.62057 · doi:10.1016/0304-4149(89)90072-0
[430] K. V. Mitov, V. A. Vatutin, and N. M. Yanev, ?Continuous-time branching processes with decreasing state-dependent immigration,?Adv. Appl. Probab.,16, No. 4, 697?714 (1984). · Zbl 0549.60079 · doi:10.1017/S0001867800022904
[431] K. V. Mitov and N. M. Yanev, ?Critical Galton-Watson processes with decreasing state-dependent immigration,?J. Appl. Probab.,21, No. 1. 22?39 (1984). · Zbl 0532.60079
[432] K. V. Mitov and N. M. Yanev, ?Bellman-Harris branching processes with state-dependent immigration,?J. Appl. Probab.,22, No. 4, 757?765 (1985). · Zbl 0581.60068
[433] K. V. Mitov and N. M. Yanev, ?Bellman-Harris branching processes with special type of state-dependent immigration,?Dokl. Bulg. Akad. Nauk,41, No. 9, 23?25 (1988). · Zbl 0655.60073
[434] K. Y. Mitov and N. M. Yanev, ?Bellman-Harris branching processes with a special type of state-dependent immigration,?Adv. Appl. Probab.,21, No. 2, 270?283 (1989). · Zbl 0674.60079 · doi:10.1017/S0001867800018541
[435] C. J. Mode, ?A bisexual multi-type branching process with applications in population genetics,?Bull. Math. Biophys.,34, No. 1, 13?31 (1972). · Zbl 0231.92004 · doi:10.1007/BF02477021
[436] G. S. Mokaddis, ?A generalized age-dependent branching process and its limit distribution,?Indian J. Pure Appl. Math.,16, No. 12, 1399?1406 (1985). · Zbl 0584.60089
[437] Tetsuo Nakagawa., ?On the moments of extinction times for branching processes with random environments,?Res. Repts. Nagaoka Techn. Coll.,9, No. 2, 45?47 (1973). · Zbl 0294.60066
[438] Tetsuo Nakagawa, ?On the reverse process of a critical multi-type Galton-Watson process without variance,?J. Multivar. Anal.,14, No. 1, 94?100 (1984). · Zbl 0532.60078 · doi:10.1016/0047-259X(84)90049-6
[439] Tetsuo Nakagawa, ?Convergence of critical multi-type Galten-Watson branching processes,?Stochast. Process. Appl,23, No. 2, 269?279 (1986). · Zbl 0608.60080 · doi:10.1016/0304-4149(86)90040-2
[440] K. Nanthi, ?Estimation of the criticality parameter of a supercritical branching process with random environments.?J. Appl. Probab.,16, No. 4, 890?896, (1979). · Zbl 0422.60064 · doi:10.1017/S002190020003357X
[441] K. Nanthi and M. T. Wasan, ?Statistical estimation for stochastic processes,?Queen’s Pap. Pure Appl. Math., No. 78, 1?245 (1987). · Zbl 0663.62095
[442] O. Nerman, ?On the convergence of supercritical general (C-M-J) branching processes,?Z. Wahrschein. Verw. Geb.,57, No. 3, 365?395 (1981). · Zbl 0451.60078 · doi:10.1007/BF00534830
[443] O. Nerman, ?The stable pedigrees of critical branching populations,?J. Appl. Probab.,21, No. 2, 447?463 (1984). · Zbl 0552.60080 · doi:10.1017/S0021900200028679
[444] O. Nerman and P. Jagers, ?The stable doubly infinite pedigree process of supercritical branching populations,?Z. Wahrschein. Verw. Geb.,65, No. 3, 445?460 (1984). · Zbl 0506.60084 · doi:10.1007/BF00533746
[445] J. Neveu, ?Arbres et processus de Galton-Watson,?Ann. Inst. H. Poincaré. Probab. Statist.,22, No. 2, 199?207 (1986).
[446] J. Neveu, ?Erasing a branching tree,?Adv. Appl. Probab.,18, No. 4, Suppl, 101?108 (1986). · Zbl 0613.60078
[447] J. Neveu, ?Multiplicative martingales for spatial branching processes.? In:Semin. Stochastic Processes, 223?242, Princeton, March 26?28, 1987, Boston-Basel (1988).
[448] J. Neveu and J. Pitman, ?Renewal property of the extrema and tree property of the excursion of a one-dimensional Brownian motion,?Led. Notes Math.,1372, 239?247 (1989). · Zbl 0741.60080 · doi:10.1007/BFb0083976
[449] J. Neveu and J. Pitman, ?The branching process in a Brownian excursion,?Led. Notes Math.,1372, 248?257 (1989). · Zbl 0741.60081 · doi:10.1007/BFb0083977
[450] Yukio Ogura, ?Spectral representation for branching processes on the real half line,?Publs. Res. Inst. Math. Sn..5. No. 3. 423 441 (1970). · Zbl 0236.60054
[451] Yukio Ogura, ?Spectral representation for branching processes with immigration on the real half line,?Publs. Res. Inst. Math. Sci.,6, No. 2, 307?321 (1970). · Zbl 0236.60053 · doi:10.2977/prims/1195194090
[452] Yukio Ogura, ?Spectral representation for continuous state branching processes,?Publs. Res. Inst. Math. Sci.,10, No. 1, 51?75 (1974). · Zbl 0294.60067 · doi:10.2977/prims/1195192172
[453] Yukio Ogura, ?A limit theorem for particle number in bounded domains of a branching diffusion process,?Stochast. Process. Appl,14, No. 1, 19?40 (1983). · Zbl 0494.60083 · doi:10.1016/0304-4149(83)90044-3
[454] Tomoko Ohta and Ken-ichi Kojima, ?Survival probabilities of new inversions on large populations.?Biometrics,24, No. 3, 501?516 (1968). · doi:10.2307/2528314
[455] A. G. Pakes, ?On the age distribution of a Markov chain,?J. Appl. Probab.,15, No. 1, 65?77 (1978). · Zbl 0374.60087 · doi:10.1017/S0021900200105595
[456] A. G. Pukes, ?Some limit theorems for Ji?ina processes,?Period. Math. Hung.,10, No. 1, 55?66 (1979). · Zbl 0362.60085 · doi:10.1007/BF02018373
[457] A. G. Pakes, ?The Galton-Watson process with killing,?Math. Biosci. 69, No. 2, 171?188 (1984). · Zbl 0541.60087 · doi:10.1016/0025-5564(84)90083-X
[458] A. G. Pakes, ?Some properties of a branching process with group immigration and emigration,?Adv. Appl. Probab.,18, No. 3, 628?645 (1986). · Zbl 0631.60083 · doi:10.1017/S0001867800015998
[459] A. G. Pakes, ?The Markov branching-catastrophe process,?Stochast. Process. Appl.,23, No. 1, 1?33 (1986). · Zbl 0633.92014 · doi:10.1016/0304-4149(86)90014-1
[460] A. G. Pakes, ?Limit theorems for the population size of a. birth and death process allowing catastrophes,?J. Math. Biol,25, No. 3, 307?325 (1987). · Zbl 0642.92012 · doi:10.1007/BF00276439
[461] A. G. Pakes, ?Remarks on the maxima of a martingale sequence with application to the simple critical branching process,?J. Appl. Probab.,24, No. 3, 768?772 (1987). · doi:10.1017/S0021900200031478
[462] A. G. Pakes, ?The Markov branching process with density-independent catastrophes. I. Behavior of extinction probabilities,?Math. Proc. Cambridge Phil. Soc.,103, No. 2, 351?366 (1988). · Zbl 0641.60089 · doi:10.1017/S0305004100064938
[463] A. G. Pakes, ?Some limit theorems for continuous-state branching processes,?J. Austral. Math. Soc.,A44, No. 1, 71?87 (1988). · Zbl 0638.60089 · doi:10.1017/S1446788700031384
[464] A. G. Pakes, ?A complementary note on the supercritical birth, death and catastrophe process,?J. Math. Biol.,27, No. 3, 321?325 (1989). · Zbl 0721.60094 · doi:10.1007/BF00275815
[465] A. G. Pakes, ?On the asymptotic behavior of the extinction time of the simple branching process,?Adv. Appl. Probab.,21, No. 2, 470?472 (1989). · Zbl 0679.60083 · doi:10.1017/S0001867800018644
[466] A. G. Pakes, ?Asymptotic results for the extinction time of Markov branching processes allowing emigration, I. Random walk decrements,?Adv. Appl. Probab.,21, No. 2, 243?269 (1989). · Zbl 0671.60078 · doi:10.1017/S000186780001853X
[467] A. G. Pakes, ?The Markov branching process with density-independent catastrophes. II. The subcritical and critical cases,?Math. Proc. Cambridge Phil. Soc.,106, No. 2, 369?383 (1989). · Zbl 0735.60090 · doi:10.1017/S0305004100078178
[468] A. G. Pakes, ?The Markov branching process with density-independent catastrophes. III. The supercritical case,?Math. Proc. Cambridge Phil. Soc.,107, No. 1, 177?192 (1990). · Zbl 0768.60073 · doi:10.1017/S0305004100068444
[469] A. G. Pakes and C. C. Heyde, ?Optimal estimation of the criticality parameter of a supercritical branching process having random environments,?J. Appl. Probab.,19, No. 2, 415?420 (1982). · Zbl 0483.60082 · doi:10.1017/S0021900200022890
[470] A. G. Pakes and P. K. Pollett, ?The supercritical birth, death and catastrophe process: limit theorems on the set of extinction,?Stochast. Process. Appl.,32, No. 1, 161?170 (1989). · Zbl 0726.60084 · doi:10.1016/0304-4149(89)90060-4
[471] A. G. Pakes and S. Tavaré, ?Comments on the age distribution of Markov processes,?Adv. Appl. Probab.,13, No. 4, 681?703 (1981). · doi:10.1017/S0001867800036454
[472] A. G. Pakes and A. C. Trajstman, ?Some properties of continuous-state branching processes with application to Bartoszynski’s virus model,?Adv. Appl. Probab.,17, No. 1, 23?41 (1985). · Zbl 0562.92015
[473] P. R. Parthasarathy, ?On a modified Markov branching process,?J. Math. Biol,7, No. 1, 95?97 (1979). · Zbl 0397.60068 · doi:10.1007/BF00276415
[474] L. V. D. Pierre, ?Processus de branchements dépendant de la densite,?Ann. Inst. H. Poincaré, B., 21, No. 3, 289?303 (1985).
[475] M. A. Pinsky, ?Limit theorems for continuous state branching processes with immigration,?Bull. Amer. Math. Soc.,78, No. 2, 242?244 (1972). · Zbl 0252.60031 · doi:10.1090/S0002-9904-1972-12938-0
[476] U. Prehn and I. Langer, ?The expected source time of a subcritical multi-type Galton-Watson process,?Math. Nachr.,138, No. 83?92 (1988). · Zbl 0662.60087
[477] H. Pruscha, ?Parametric inference in Markov branching processes with time-dependent random immigration rate,?J. Appl. Probab.,22, No. 3, 503?517 (1985). · Zbl 0574.62082 · doi:10.1017/S0021900200029284
[478] J. Radcliffe, ?The convergence of a position-dependent branching process used as an approximation to a model describing the spread of an epidemic,?J. Appl. Probab.,13, No. 2, 338?344 (1976). · Zbl 0349.92032 · doi:10.1017/S0021900200094390
[479] D. C. Raffety, ?Random environment branching processes with equal environment extinction probabilities.,?J. Appl. Probab.,10, No. 3, 659?665 (1973). · Zbl 0269.60066 · doi:10.1017/S0021900200118522
[480] P. F. Ramig, ?On the Galton-Watson branching process: application of a method of moments and recursive determination for certain distributions,?Commun. Statist.,A6, No. 2, 175?196 (1977). · Zbl 0391.60075 · doi:10.1080/03610927708827481
[481] H. Reinhard, ?Fonctionelles additives de diffusions et de processus de branchment, ?Bull. Soc. Math. France, No. 35. 17?55 (1973).
[482] J. F. Reynolds, ?A theorem on Markov branching processes.?J. Appl. Probab.,9, No. 3, 667?670 (1972). · Zbl 0271.60094 · doi:10.1017/S0021900200035968
[483] L. C. G. Rogers, ?Brownian local times and branching processes,?Led. Notes Math.,1059, 42?55 (1984). · doi:10.1007/BFb0100030
[484] G. Rosenkranz, ?Diffusion approximation of controlled branching processes with random environments?Stochast. Anal. Appl.,3, No. 3, 363?377 (1985). · Zbl 0574.60089 · doi:10.1080/07362998508809068
[485] H. Rossrmann and W. Warmuth, ?Eine Unschärferelation fur discrete Verteilungen,?Math. Operationsforsch. Statist., Ser. Statist.,10, No. l, 173?178 (1979).
[486] A. Rouault, ?Comportement asymptotique d’un processus de branchement spatial en zone souscritique,?C. R. Acad. Sci., Ser. I,299, No. 17, 887?890 (1984). · Zbl 0576.60080
[487] A. Rouault, ?Probabilités de présence dans un processus de branchement spatial markovien,?Ann. Inst. H. Poincaré. Probab. Statist.,23, No. 1, 37?61 (1987). · Zbl 0611.60082
[488] A. Rouault, ?Espérances et majorations pour un processus de branchement spatial markovien,?Ann. Inst. H. Poincaré. Probab. Statist.,23, No. 3, 459?497 (1987). · Zbl 0658.60117
[489] G. Sankaranarayanan, R. M. Chockalingam, and S. Srinivasan,Recent Developments in Branching Processes and Its Estimation Theory, John Wiley, New York (1987).
[490] D. Sankoff, ?Branching processes with terminal types: application to context-free grammars,?J. Appl. Probab.,8, No. 2, 233?240 (1971). · Zbl 0222.60055 · doi:10.1017/S0021900200035245
[491] P. S. Santana and M. S. Garcia, ?A population process with offspring distribution depending on both population size and generation,?J. Appl. Probab.,26, No. 4, 866?872 (1989). · Zbl 0688.60068 · doi:10.1017/S002190020002773X
[492] K. Sato, ?Convergence to diffusion processes for a class of Markov chains related to population genetics,?Led. Notes Math.,550, 550?561 (1976). · doi:10.1007/BFb0077513
[493] H.-J. Schuh, ?A condition for the extinction of a. branching process with an absorbing lower barrier,?,J. Math. Biol,3, No. 3?4, 271?287 (1976). · Zbl 0349.60088 · doi:10.1007/BF00275060
[494] H.-J. Schuh, ?Sums of i.i.d. variables and an application to the explosion criterion for Markov branching processes,?J. Appl. Probab.,19, No. 1, 29?38 (1982). · Zbl 0482.60047 · doi:10.1017/S0021900200028254
[495] D. Scott, ?On posterior asymptotic normality and asymptotic normality of estimators for the Galton-Watson process,?J. Roy. Statist. Soc.,C49, No. 2, 209?214 (1987). · Zbl 0629.62027
[496] E. Seneta, ?Some supplementary notes on one-type continuous-state branching processes,?Z. Wahr-shein. Verw. Geb.,34, No. 1, 87?89 (1976). · Zbl 0304.60048 · doi:10.1007/BF00532691
[497] E. Seneta and D. Vere-Jones, ?On the asymptotic behavior of subcritical branching processes with continuous state space,?Z. Wahrschein. Verw. Geb.,10, No. 3. 212?225 (1968). · Zbl 0167.16801 · doi:10.1007/BF00536275
[498] E. Seneta and D. Vere-Jones, ?On a problem of M. Ji?ina conceming continuous state branching processes,?Czechosl. Math. J.,19, No. 2, 277?283 (1969).
[499] B. A. Sevastyanov, ?Some generalizations of branching processes.? In:Second Japan-USSR Symp. Probab. Theory,I, 61?68, Kyoto (1972).
[500] M. Shaked and J. G. Shantikumar, ?Characterization of some first passage times using log-concavity and log-convexity as ageing notions?Probab. Eng. Inf. Sci:,I, 279?291 (1987). · Zbl 1133.60309 · doi:10.1017/S026996480000005X
[501] M. Shaked and J. G. Shantikumar, ?Characterization of some first passage times using log-concavity and log-convexity as ageing notions?Probab. Eng. Inf. Sci,I, 279?291 (1987). · Zbl 1133.60309 · doi:10.1017/S026996480000005X
[502] K. Siegrist, ?An um model with Bernoulli removals and independent additions,?Stochast. Process. Appl.,25, No. 2, 315?324 (1987). · Zbl 0625.60120 · doi:10.1016/0304-4149(87)90210-9
[503] R. S. Slack, ?A branching process with mean one and possibly infinite variance,?Z. Wahrschein. Verw. Geb.,9, No. 2, 139?145 (1968). · Zbl 0164.47002 · doi:10.1007/BF01851004
[504] W. L. Smith, ?Necessary conditions for almost sure extinction of a, branching process with random environments.?Ann. Math. Statist.,39, No. 6, 2136?2140 (1968). · Zbl 0176.47602 · doi:10.1214/aoms/1177698045
[505] Y. L. Smith and W. E. Wilkinson, ?On branching processes in random environments,?Ann. Math. Stat.,4, No. 3, 814?827 (1969). · Zbl 0184.21103 · doi:10.1214/aoms/1177697589
[506] W. L. Smith and W. E. Wilkinson, ?Branching processes in Markov environments,?Duke Math. J.,38, No. 4, 749?763 (1971). · Zbl 0283.60087 · doi:10.1215/S0012-7094-71-03891-9
[507] A. Sp?taru, ?Properties of branching processes with denumerably many types.?Rev. Roum. Math. Pures Appl. 34. No. 8. 747?759 (1989). · Zbl 0692.60066
[508] R. C. Srivastava and R. W. Potter, ?Estimation of the variance of a Galton-Watson branching process: small sample results.? In:Model, and Simul,II,Proc. IIth Annu. Pittsburgh Conf., May 1?2, 1980. 1529 1536. Pt. 4, Triangle Park, N. C. (1980).
[509] A. Sudbury, ?The expected population size in a cell-size-dependent branching process,?J. Appl. Probab.,18, No. 1, 65?75 (1981). · Zbl 0453.60076 · doi:10.1017/S0021900200097618
[510] A. Sudbury, ?The time taken for a population to grow from sizem to sizekm?J. Appl. Probab.,20, No. 4, 728?736 (1983). · Zbl 0525.60088 · doi:10.1017/S0021900200024049
[511] A. Sudbury and P. Clifford, ?Some results for general cell-size-dependent branching processes,?J. Appl. Probab.,10, No. 2, 289?298 (1973). · Zbl 0273.60065 · doi:10.1017/S0021900200095292
[512] T. J. Sweeting, ?Asymptotic conditional inference for the offspring mean of a supercritical Galton-Watson process,?Ann. Statist.,14, No. 3, 925?933 (1986). · Zbl 0633.62084 · doi:10.1214/aos/1176350042
[513] L. Takàcs, ?Queues, random graphs and branching processes,?J. Appl. Probab. Math. Simul.,1, No. 3, 223?243 (1988). · Zbl 0655.60088 · doi:10.1155/S1048953388000164
[514] Ken-ichi Tanaka, ?On the extinction probability of temporally inhomogeneous Galton-Watson process with continuous time parameter,?Sci. Pap. Coll. Gen. Educ. Univ. Tokyo,31, No. 2, 97?99 (1981). · Zbl 0491.60088
[515] D. Tanny, ?Limit theorems for bra.nching processes in a random environment,?Ann. Probab.,5, No. 1, 100?116 (1977). · Zbl 0368.60094 · doi:10.1214/aop/1176995894
[516] D. Tanny, ?On multi-type branching processes in a random environment,?Adv. Appl. Probab.,13, No. 3, 464?497 (1981). · Zbl 0471.60086 · doi:10.1017/S0001867800036235
[517] D. Tanny, ?A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means,?Stochast. Process. Appl.,28, No. 1, 123?139 (1988). · Zbl 0643.60064 · doi:10.1016/0304-4149(88)90070-1
[518] N. N. Tarkhanov and D. M. Shoyhet, ?A remark on the probability of degeneration of a multidimensional branching Galton-Watson process,?Serdica,15, No. 3, 171?173 (1989).
[519] S. Tavaré, ?The birth process with immigration and the genealogical structure of large populations,?J. Math. Biol,25, No. 2, 161?168 (1987). · Zbl 0625.92010 · doi:10.1007/BF00276387
[520] B. W. Tumbull, ?Inequalities for branching processes,?Ann. Probab.,1, No. 3, 457?479 (1973). · Zbl 0258.60063 · doi:10.1214/aop/1176996939
[521] Kohei Uchiyama, ?Spatial growth of a branching process of particles living inR d ,?Ann. Probab.,10, No. 4, 896?918 (1982). · Zbl 0499.60088 · doi:10.1214/aop/1176993712
[522] S. Udayabaskaran and G. Sudalaiyandi, ?On a stochastic integral of a branching process,?J. Math. Biol.,24, No. 4, 467?472 (1986). · Zbl 0614.60080 · doi:10.1007/BF01236893
[523] F. J. S. Wang, ?A central limit theorem for age- and density-dependent population process,?Stochast. Process. Appl.,5, No. 2, 173?193 (1977). · Zbl 0365.92030 · doi:10.1016/0304-4149(77)90028-X
[524] F. J. S. Wang, ?Diffusion approximation of age- and position-dependent branching processes,?Stochast. Process. Appl.,13, No. 1, 59?74 (1982). · Zbl 0484.60069 · doi:10.1016/0304-4149(82)90007-2
[525] C. Z. Wei and J. Winnicki, ?Some asymptotic results for the branching process with immigration,?Stochast. Process. Appl,31, No. 2, 261?282 (1989). · Zbl 0673.60092 · doi:10.1016/0304-4149(89)90092-6
[526] H. J. Weiner, ?Critical age-dependent branching processes with sibling correlation,?Math. Biosci.,16, No. 1?2, 67?74 (1973). · Zbl 0248.60060 · doi:10.1016/0025-5564(73)90045-X
[527] H. J. Weiner, ?Moments of the maximum in a critical branching process,?J. Appl. Probab.,21, No. 4, 920?923 (1984). · Zbl 0564.60079 · doi:10.1017/S002190020003761X
[528] E. W. Weissner, ?Multi-type branching processes in random environments,?J. Appl. Probab.,8, No. 1, 17?31 (1971). · Zbl 0219.60062 · doi:10.1017/S0021900200110897
[529] Zhi-Ying Wen, ?Sur quelques théorèmes de convergence du processus de naissance avec interaction des voisins,?Bull. Soc. Math. Fr.,114, No. 4, 403?429 (1986). · Zbl 0624.60096 · doi:10.24033/bsmf.2063
[530] W. E. Wilkinson, ?On calculating extinction probabilities for branching processes in random environments,?J. Appl. Probab.,6, No. 3, 478?492 (1969). · Zbl 0214.43802 · doi:10.1017/S0021900200026553
[531] E. Willekens, ?On higher moments of the population size in a subcritical branching process,?J. Appl. Probab. 25, No. 2, 413?417 (1988). · Zbl 0647.60093 · doi:10.1017/S002190020004105X
[532] J. Winnicki, ?Estimation theory for the branching process with immigration.?Contemp. Math.,80, 301?322 (1988). · Zbl 0678.62079 · doi:10.1090/conm/080/999018
[533] C. Wof’sy (Lipov), ?Behavior of limiting diffusions for density-dependent branching processes,?Lect. Notes Biomath.,38, 130?137 (1980). · doi:10.1007/978-3-642-61850-5_13
[534] Makoto Yamazato, ?Extinction probabilities of controlled Markov branching processes,?Sci. Repts. Tokyo Kyoiku Diagaku,A13, No. 347?375, 56?65 (1975).
[535] G. P. Yanev and N. M. Yanev, ?Branching processes with multiplication.? In:Mathematics and Mathematical Education, Proc. 17th Conf. of Bulg. Math. Union., 6?9 Apr. 1988, 385?389, Sofia (1988). · Zbl 0772.60061
[536] G. P. Yanev and N. M. Yanev, ?Conditions for extinction of controlled branching processes.? In:Mathematics and Mathematical Education, Proc. 18th Conf. of Bulg. Math. Union., 6?9 Apr. 1989, 550?556, Sofia (1989). · Zbl 0712.60091
[537] G. P. Yanev and N. M. Yanev, ?On the critical branching migration processes with predominant emigration,?Dokl. Bulg. Akad. Nauk,42, No. 12, 47?48 (1989). · Zbl 0712.60091
[538] N. M. Yanev, ?Limit theorems for estimators in Galton-Watson branching processes,?Dokl. Bulg. Akad. Nauk,38, No. 6, 683?686 (1985). · Zbl 0576.60076
[539] N. M. Yanev and K. V. Mitov, ?Controlled branching processes: the case of random migration,?Dokl. Bulg. Akad. Nauk,33, No. 4, 473?475 (1980). · Zbl 0444.60067
[540] N. M. Yanev and K. V. Mitov, ?Critical branching processes with nonhomogeneous migration,?Ann. Probab.,13, No. 3, 923?933 (1985). · Zbl 0576.60077 · doi:10.1214/aop/1176992914
[541] N. M. Yanev and M. N. Slavtchova, ?Limit theorems for non-critical Bellman-Harris branching processes with state-dependent immigration,?Dokl. Bulg. Akad. Nauk,41, No. 12, 27?30 (1988). · Zbl 0674.60078
[542] S. F. Yashkov, ?A derivation of response time distribution for aM|G|I processor-sharing queue,?Probl. Control Inform. Theory,12, No. 2, 133?147 (1989).
[543] Yi Ci Zhang, ?A limit theorem for the continuous state branching process,?Stochast. Process. Appl.,14, No. 2, 175?186 (1983). · Zbl 0495.60084 · doi:10.1016/0304-4149(83)90070-4
[544] Yi Ci Zhang, ?Corrigendum: A limit theorem for the continuous state branching process,?Stochast. Process. Appl,15, No. 3, 327 (1983). · Zbl 0515.60083 · doi:10.1016/0304-4149(83)90040-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.