Dursun, Uğur Rotational Weingarten surfaces in hyperbolic 3-space. (English) Zbl 1433.53085 J. Geom. 111, No. 1, Paper No. 7, 12 p. (2020). MSC: 53C40 53C42 PDF BibTeX XML Cite \textit{U. Dursun}, J. Geom. 111, No. 1, Paper No. 7, 12 p. (2020; Zbl 1433.53085) Full Text: DOI
do Rei Filho, C.; Tojeiro, R. Conformally flat hypersurfaces with constant scalar curvature. (English) Zbl 1398.53011 Differ. Geom. Appl. 61, 133-146 (2018). MSC: 53A07 PDF BibTeX XML Cite \textit{C. do Rei Filho} and \textit{R. Tojeiro}, Differ. Geom. Appl. 61, 133--146 (2018; Zbl 1398.53011) Full Text: DOI
Alías, Luis J.; Meléndez, Josué; Palmas, Oscar Hypersurfaces with constant scalar curvature in space forms. (English) Zbl 1387.53069 Differ. Geom. Appl. 58, 65-82 (2018). MSC: 53C40 53C42 PDF BibTeX XML Cite \textit{L. J. Alías} et al., Differ. Geom. Appl. 58, 65--82 (2018; Zbl 1387.53069) Full Text: DOI
Meléndez, Josué; Palmas, Oscar Hypersurfaces with constant higher order mean curvature in space forms. (English) Zbl 1425.53074 Differ. Geom. Appl. 51, 15-32 (2017). MSC: 53C42 53C40 53A10 PDF BibTeX XML Cite \textit{J. Meléndez} and \textit{O. Palmas}, Differ. Geom. Appl. 51, 15--32 (2017; Zbl 1425.53074) Full Text: DOI
Wei, Guoxin; Wen, Guohua Hypersurfaces with constant \(m\)th mean curvature in the spheres. (English) Zbl 1337.53074 J. Geom. Phys. 104, 121-127 (2016). MSC: 53C40 53C20 PDF BibTeX XML Cite \textit{G. Wei} and \textit{G. Wen}, J. Geom. Phys. 104, 121--127 (2016; Zbl 1337.53074) Full Text: DOI
Barros, A.; Cruz, C.; Batista, R.; Sousa, P. Rigidity in dimension four of area-minimising Einstein manifolds. (English) Zbl 1371.53043 Math. Proc. Camb. Philos. Soc. 158, No. 2, 355-363 (2015). MSC: 53C25 53C24 PDF BibTeX XML Cite \textit{A. Barros} et al., Math. Proc. Camb. Philos. Soc. 158, No. 2, 355--363 (2015; Zbl 1371.53043) Full Text: DOI
Elbert, Maria Fernanda; Sa Earp, Ricardo Constructions of \(H_r\)-hypersurfaces, barriers and Alexandrov theorem in \(\mathbb H^n\times\mathbb R\). (English) Zbl 1329.53084 Ann. Mat. Pura Appl. (4) 194, No. 6, 1809-1834 (2015). MSC: 53C42 53A10 53C21 PDF BibTeX XML Cite \textit{M. F. Elbert} and \textit{R. Sa Earp}, Ann. Mat. Pura Appl. (4) 194, No. 6, 1809--1834 (2015; Zbl 1329.53084) Full Text: DOI arXiv
Barros, Manuel; Garay, Óscar J. Critical curves for the total normal curvature in surfaces of 3-dimensional space forms. (English) Zbl 1231.49036 J. Math. Anal. Appl. 389, No. 1, 275-292 (2012). MSC: 49Q20 53A04 PDF BibTeX XML Cite \textit{M. Barros} and \textit{Ó. J. Garay}, J. Math. Anal. Appl. 389, No. 1, 275--292 (2012; Zbl 1231.49036) Full Text: DOI
Lopes de Lima, Levi; Sousa, Antonio Two-ended \(r\)-minimal hypersurfaces in Euclidean space. (English) Zbl 1277.53056 Ill. J. Math. 55, No. 4, 1327-1348 (2011). Reviewer: Costache Apreutesei (Iaşi) MSC: 53C42 53C40 53A07 PDF BibTeX XML Cite \textit{L. Lopes de Lima} and \textit{A. Sousa}, Ill. J. Math. 55, No. 4, 1327--1348 (2011; Zbl 1277.53056) Full Text: Euclid
Wei, Guoxin; Cheng, Qing-Ming; Li, Haizhong Embedded hypersurfaces with constant \(m\)th mean curvature in a unit sphere. (English) Zbl 1213.53081 Commun. Contemp. Math. 12, No. 6, 997-1013 (2010). Reviewer: Costache Apreutesei (Iaşi) MSC: 53C42 53C43 PDF BibTeX XML Cite \textit{G. Wei} et al., Commun. Contemp. Math. 12, No. 6, 997--1013 (2010; Zbl 1213.53081) Full Text: DOI arXiv
Okayasu, Takashi New examples of complete hypersurfaces with constant positive scalar curvature in the Euclidean space. (English) Zbl 1208.53063 J. Math. Soc. Japan 62, No. 4, 1137-1166 (2010). Reviewer: Huili Liu (Shenyang) MSC: 53C40 53C42 PDF BibTeX XML Cite \textit{T. Okayasu}, J. Math. Soc. Japan 62, No. 4, 1137--1166 (2010; Zbl 1208.53063) Full Text: DOI
Brasil, Aldir jun.; Colares, A. Gervasio; Palmas, Oscar Complete hypersurfaces with constant scalar curvature in spheres. (English) Zbl 1201.53068 Monatsh. Math. 161, No. 4, 369-380 (2010). MSC: 53C42 53A10 PDF BibTeX XML Cite \textit{A. Brasil jun.} et al., Monatsh. Math. 161, No. 4, 369--380 (2010; Zbl 1201.53068) Full Text: DOI
Sousa, Paulo \(O(p+1)\times O(q+1)\)-invariant \((r-1)\)-minimal hypersurfaces in Euclidean space \( \mathbb R^{p+q+2}\). (English) Zbl 1191.53048 Adv. Geom. 10, No. 1, 111-134 (2010). Reviewer: Gabjin Yun (Yongin) MSC: 53C42 53A10 PDF BibTeX XML Cite \textit{P. Sousa}, Adv. Geom. 10, No. 1, 111--134 (2010; Zbl 1191.53048) Full Text: DOI
Hu, Ze Jun; Tian, Xiao Li On Möbius form and Möbius isoparametric hypersurfaces. (English) Zbl 1191.53014 Acta Math. Sin., Engl. Ser. 25, No. 12, 2077-2092 (2009). Reviewer: Krishan Lal Duggal (Windsor/Ontario) MSC: 53A30 53B25 PDF BibTeX XML Cite \textit{Z. J. Hu} and \textit{X. L. Tian}, Acta Math. Sin., Engl. Ser. 25, No. 12, 2077--2092 (2009; Zbl 1191.53014) Full Text: DOI
Butscher, Adrian Gluing constructions amongst constant mean curvature hypersurfaces in \({\mathbb {S}^{n+1}}\). (English) Zbl 1178.53057 Ann. Global Anal. Geom. 36, No. 3, 221-274 (2009). MSC: 53C42 PDF BibTeX XML Cite \textit{A. Butscher}, Ann. Global Anal. Geom. 36, No. 3, 221--274 (2009; Zbl 1178.53057) Full Text: DOI arXiv
Wei, Guoxin J. Simons’ type integral formula for hypersurfaces in a unit sphere. (English) Zbl 1138.53052 J. Math. Anal. Appl. 340, No. 2, 1371-1379 (2008). Reviewer: Andreas Bernig (Fribourg) MSC: 53C42 PDF BibTeX XML Cite \textit{G. Wei}, J. Math. Anal. Appl. 340, No. 2, 1371--1379 (2008; Zbl 1138.53052) Full Text: DOI
Wei, Guo Xin Rigidity theorem of hypersurfaces with constant scalar curvature in a unit sphere. (English) Zbl 1121.53039 Acta Math. Sin., Engl. Ser. 23, No. 6, 1075-1082 (2007). MSC: 53C40 53C20 53C42 PDF BibTeX XML Cite \textit{G. X. Wei}, Acta Math. Sin., Engl. Ser. 23, No. 6, 1075--1082 (2007; Zbl 1121.53039) Full Text: DOI
Sato, Jocelino; de Souza Neto, Vicente Francisco Complete and stable \(O(p+1) \times O(q+1)\)-invariant hypersurfaces with zero scalar curvature in Euclidean space \(\mathbb R^{p+q+2}\). (English) Zbl 1116.53010 Ann. Global Anal. Geom. 29, No. 3, 221-240 (2006). Reviewer: Ivko Dimitric (Uniontown) MSC: 53A10 53C42 49Q05 PDF BibTeX XML Cite \textit{J. Sato} and \textit{V. F. de Souza Neto}, Ann. Global Anal. Geom. 29, No. 3, 221--240 (2006; Zbl 1116.53010) Full Text: DOI
Li, Haizhong; Wei, Guoxin Embedded rotational hypersurfaces with constant scalar curvature in \(S^n\): a correction to a statement in M. L. Leite, Manuscripta Math. 67, 285–304 (1990; Zbl 695.53040). (English) Zbl 1097.53035 Manuscr. Math. 120, No. 3, 319-323 (2006). Reviewer: Thomas Hasanis (Ioannina) MSC: 53C40 PDF BibTeX XML Cite \textit{H. Li} and \textit{G. Wei}, Manuscr. Math. 120, No. 3, 319--323 (2006; Zbl 1097.53035) Full Text: DOI
Hu, Zejun; Zhai, Shujie Hypersurface of the hyperbolic space with constant scalar curvature. (English) Zbl 1092.53032 Result. Math. 48, No. 1-2, 65-88 (2005). Reviewer: Mohamed Belkhelfa (Mascara) MSC: 53C24 53B30 PDF BibTeX XML Cite \textit{Z. Hu} and \textit{S. Zhai}, Result. Math. 48, No. 1--2, 65--88 (2005; Zbl 1092.53032) Full Text: DOI
Brasil, Aldir jun.; Colares, A. Gervasio; Palmas, Oscar A gap theorem for complete constant scalar curvature hypersurfaces in the de Sitter space. (English) Zbl 1027.53065 J. Geom. Phys. 37, No. 3, 237-250 (2001). Reviewer: W.Mozgawa (Lublin) MSC: 53C42 53C40 53A10 PDF BibTeX XML Cite \textit{A. Brasil jun.} et al., J. Geom. Phys. 37, No. 3, 237--250 (2001; Zbl 1027.53065) Full Text: DOI
Palmas, Oscar Complete rotation hypersurfaces with \(H_k\) constant in space forms. (English) Zbl 1058.53044 Bol. Soc. Bras. Mat., Nova Sér. 30, No. 2, 139-161 (1999). MSC: 53C40 PDF BibTeX XML Cite \textit{O. Palmas}, Bol. Soc. Bras. Mat., Nova Sér. 30, No. 2, 139--161 (1999; Zbl 1058.53044) Full Text: DOI
Kühnel, Wolfgang; Rademacher, Hans-Bert Conformal vector fields on pseudo-Riemannian spaces. (English) Zbl 0901.53048 Differ. Geom. Appl. 7, No. 3, 237-250 (1997). Reviewer: Peter Bueken (Leuven) MSC: 53C50 53C25 PDF BibTeX XML Cite \textit{W. Kühnel} and \textit{H.-B. Rademacher}, Differ. Geom. Appl. 7, No. 3, 237--250 (1997; Zbl 0901.53048) Full Text: DOI
Nelli, Barbara; Rosenberg, Harold Some remarks on positive scalar and Gauss-Kronecker curvature hypersurfaces of \({\mathbb R}^{n+1}\) and \({\mathbb H}^{n+1}\). (English) Zbl 0878.53007 Ann. Inst. Fourier 47, No. 4, 1209-1218 (1997). MSC: 53A07 PDF BibTeX XML Cite \textit{B. Nelli} and \textit{H. Rosenberg}, Ann. Inst. Fourier 47, No. 4, 1209--1218 (1997; Zbl 0878.53007) Full Text: DOI Numdam EuDML
Becker, Markus; Kühnel, Wolfgang Hypersurfaces with constant inner curvature of the second fundamental form, and the non-rigidity of the sphere. (English) Zbl 0869.53003 Math. Z. 223, No. 4, 693-708 (1996). MSC: 53A07 53C40 53A15 PDF BibTeX XML Cite \textit{M. Becker} and \textit{W. Kühnel}, Math. Z. 223, No. 4, 693--708 (1996; Zbl 0869.53003) Full Text: DOI EuDML