×

zbMATH — the first resource for mathematics

Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system. (English) Zbl 1302.35239
The authors consider the Cauchy problem for the isentropic Euler system in two spatial dimensions. The initial data are smooth at both sides of a smooth curve, but are discontinuous on this curve. Local existence of a piecewise smooth solution is proven. The solution contains three kids of singularities: shock wave, rarefaction wave, and contact discontinuity. The proof is based on an accompanying one-dimensional Riemann problem.

MSC:
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
76L05 Shock waves and blast waves in fluid mechanics
35R05 PDEs with low regular coefficients and/or low regular data
35Q31 Euler equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alinhac, S., Existence d’ondes de rarefaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations, 14, 173-230, (1989) · Zbl 0692.35063
[2] Ben-Dor, G., Shock waves reflection phenomena, (2007), Springer-Verlag Berlin, Heidelberg, New York · Zbl 1146.76001
[3] Bezard, M., Generalised Riemann problem for a strongly nonlinear multidimensional system of conservation laws, J. Equ. Deriv. Partielles, 1-11, (1990)
[4] Bui, A. T.; Li, D., The double shock front solutions for hyperbolic conservation laws in multi-dimensional space, Trans. Amer. Math. Soc., 316, 233-250, (1989)
[5] Chen, S. X., On reflection of multidimensional shock front, J. Differential Equations, 80, 199-236, (1989) · Zbl 0693.35106
[6] Chen, S. X., Existence of local solution to supersonic flow around a three dimensional wing, Adv. Appl. Math., 13, 273-304, (1992) · Zbl 0760.76040
[7] S.X. Chen, Study of multidimensional systems of conservation laws: problems, difficulties and progress, in: Proceedings of the International Congress of Mathematicians 2010, Hyderabad, India.
[8] Coulombel, J.-F.; Secchi, P., The stability of compressible vortex sheets in two-space dimension, Indiana Univ. Math. J., 53, 4, 941-1012, (2004) · Zbl 1068.35100
[9] Coulombel, J.-F.; Secchi, P., Nonlinear compressible vortex sheets in two space dimensions, Ann. Sci. Éc. Norm. Super., 41, 85-139, (2008) · Zbl 1160.35061
[10] Coulombel, J.-F.; Secchi, P., Uniqueness of 2-D compressible vortex sheets, Commun. Pure Appl. Anal., 8, 1439-1450, (2009) · Zbl 1160.76040
[11] Courant, R.; Friedrichs, K. O., Supersonic flow and shock waves, (1949), Springer-Verlag New York · Zbl 0041.11302
[12] Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., 7, 65-222, (1982) · Zbl 0499.58003
[13] Lax, P. D., Hyperbolic system of conservation laws, Comm. Pure Appl. Math., 10, 537-566, (1957) · Zbl 0081.08803
[14] Lax, P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 11, (1973), SIAM · Zbl 0268.35062
[15] Li, D., Rarefaction and shock waves for multi-dimensional hyperbolic conservation laws, Comm. Partial Differential Equations, 16, 425-450, (1991) · Zbl 0733.35074
[16] Li, T. T.; Yu, W. C., Boundary value problem for quasi-linear hyperbolic systems, Duke Univ. Math., 5, (1985)
[17] Majda, A. J.; Majda, A. J., The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc., Mem. Amer. Math. Soc., 43, 281, (1983) · Zbl 0517.76068
[18] Majda, A. J., One perspective on open problems in multi-dimensional conservation laws, IMA Math. Appl., 29, 217-237, (1991) · Zbl 0769.35038
[19] Majda, A.; Osher, S., Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28, 5, 607-675, (1975) · Zbl 0314.35061
[20] Metivier, G., Interaction de deux chocs pour un systeme de deux lois de conservation en dimension deux d’espace, Trans. Amer. Math. Soc., 296, 431-479, (1986) · Zbl 0619.35075
[21] Metivier, G., Stability of multi-dimensional weak shocks, Comm. Partial Differential Equations, 15, 983-1028, (1990) · Zbl 0711.35078
[22] Metivier, G., Ondes soniques, J. Math. Pures Appl., 70, 197-268, (1991) · Zbl 0728.35068
[23] Mnif, M., Probleme de Riemann pour une loi conservation scalaire hyperbolique d’order deux, Comm. Partial Differential Equations, 22, 1589-1627, (1997) · Zbl 0904.35050
[24] Sideris, T., Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys., 101, 475-485, (1985) · Zbl 0606.76088
[25] Smoller, J., Shock waves and reaction-diffusion equations, (1983), Springer-Verlag · Zbl 0508.35002
[26] Zheng, Y., System of conservation laws. two-dimensional Riemann problems, (2001), Birkhäuser Boston
[27] Zhang, Yongqian, Steady supersonic flow past an almost straight wedge with large vertex angle, J. Differential Equations, 192, 1-46, (2003) · Zbl 1035.35079
[28] Zhang, T.; Zheng, Y., Conjecture on the structure of solution of the Riemann problem for two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21, 593-619, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.