×

zbMATH — the first resource for mathematics

On tensoring with the Steinberg representation. (English) Zbl 07271116
Summary: Let \(G\) be a simple, simply connected algebraic group over an algebraically closed field of prime characteristic \(p > 0\). Recent work of Kildetoft and Nakano and of Sobaje has shown close connections between two long-standing conjectures of Donkin: one on tilting modules and the lifting of projective modules for Frobenius kernels of \(G\) and another on the existence of certain filtrations of \(G\)-modules. A key question related to these conjectures is whether the tensor product of the \(r\) th Steinberg module with a simple module with \(p^r\) th restricted highest weight admits a good filtration. In this paper we verify this statement (i) when \(p \geq 2h - 4\) (\(h\) is the Coxeter number), (ii) for all rank two groups, (iii) for \(p \geq 3\) when the simple module corresponds to a fundamental weight and (iv) for a number of cases when the rank is less than or equal to five.

MSC:
20G05 Representation theory for linear algebraic groups
20G10 Cohomology theory for linear algebraic groups
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
20G15 Linear algebraic groups over arbitrary fields
Software:
LiE; Magma
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen, HH, The first cohomology group of a line bundle on G/B, Invent. Math., 51, 287-296 (1979) · Zbl 0417.20038
[2] Andersen, HH, The Frobenius morphism on the cohomology of homogeneous vector bundles on G/B, Ann. of Math, 112, 113-121 (1980) · Zbl 0421.20016
[3] Andersen, HH, p-filtrations and the Steinberg module, J. Algebra, 244, 664-683 (2001) · Zbl 0989.20033
[4] Andersen, HH, The Steinberg linkage class for a reductive algebraic group, Ark. Mat., 56, 2, 229-241 (2018) · Zbl 07021436
[5] Andersen, HH; Jantzen, JC, Cohomology of induced representations for algebraic groups, Math. Ann., 269, 487-525 (1984) · Zbl 0529.20027
[6] Donkin, S., A filtration for rational modules, Math. Zeit., 177, 1-8 (1981) · Zbl 0455.20029
[7] Donkin, S., On tilting modules for algebraic groups, Math. Zeit., 212, 39-60 (1993) · Zbl 0798.20035
[8] Donkin, S., A note on the adjoint action of a semisimple group on the coordinate algebra of an infinitesimal subgroup, J. Algebra, 519, 253-272 (2019) · Zbl 1405.20034
[9] Garibaldi, S.; Guralnick, RM; Nakano, DK, Globally irreducible Weyl modules, J. Algebra, 477, 69-87 (2017) · Zbl 1427.20062
[10] Gros, M.; Kaneda, M., Contraction par Frobenius et modules de Steinberg, Ark. Mat., 56, 319-332 (2018) · Zbl 07021441
[11] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1972. · Zbl 0254.17004
[12] J. C. Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonn. Math. Schr. 67 (1973), v+124 pp. · Zbl 0288.17004
[13] J. C. Jantzen, First cohomology groups for classical Lie algebras, in: Representation Theory of Finite Groups and Finite-Dimensional Algebras (Bielefeld, 1991), Progress in Mathematics, Vol. 95, Birkhäuser, Basel, 1991, pp. 289-315. · Zbl 0749.17020
[14] J. C. Jantzen, Representations of Algebraic Groups, 2nd Ed., Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003. · Zbl 1034.20041
[15] Kildetoft, T.; Nakano, DK, On good (p, r) filtrations for rational G-modules, J. Algebra, 423, 702-725 (2015) · Zbl 1312.20039
[16] van Leeuwen, MAA; Cohen, AM; Lisser, B., LiE, A Package for Lie Group Computations (1992), Amsterdam: Computer Algebra Nederland, Amsterdam
[17] F. Lübeck, Tables of Weight Multiplicities, http://www.math.rwth-aachen.de/ Frank.Luebeck/chev/WMSmall/index.html. · Zbl 1462.20007
[18] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symb. Comp. 3/4 (1997), no. 24, 235-265. · Zbl 0898.68039
[19] Mathieu, O., Filtrations of G-modules, Ann. Sci. Ecole Norm. Sup., 23, 625-644 (1990) · Zbl 0748.20026
[20] Parshall, BJ; Scott, LL, On p-filtrations of Weyl modules, J. London Math. Soc., 91, 127-158 (2015) · Zbl 1325.20039
[21] Pillen, C., Tensor product of modules with restricted highest weight, Comm. Algebra, 21, 3647-3661 (1993) · Zbl 0792.17008
[22] Premet, AA; Suprunenko, ID, The Weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights, Comm. Algebra, 11, 1309-1342 (1983) · Zbl 0573.20040
[23] S. Riche, G. Williamson, Tilting modules and the p-canonical basis, Astérisque (2018), no. 397, ix+184 pp. · Zbl 1437.20001
[24] Ringel, CM, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z., 208, 209-223 (1991) · Zbl 0725.16011
[25] L. L. Scott, Representations in characteristic p, in: The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., Vol. 37, Amer. Math. Soc., Providence, RI, 1980, pp. 319-331.
[26] Sobaje, P., On (p, r)-filtrations and tilting modules, Proc. Amer. Math. Soc., 146, 5, 1951-1961 (2018) · Zbl 1428.20042
[27] University of Georgia VIGRE Algebra Group, First cohomology of finite groups of Lie type: simple modules with small dominant weights, Transactions of the AMS 365 (2013), 1025-1050. · Zbl 1295.20059
[28] Williamson, G., Schubert calculus and torsion explosion, J. Amer. Math. Soc., 30, 4, 1023-1046 (2017) · Zbl 1380.20015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.