×

zbMATH — the first resource for mathematics

Fast interpolation-based globality certificates for computing Kreiss constants and the distance to uncontrollability. (English) Zbl 07340703
MSC:
15Axx Basic linear algebra
65F60 Numerical computation of matrix exponential and similar matrix functions
PDF BibTeX Cite
Full Text: DOI
References:
[1] P. Benner, R. Byers, V. Mehrmann, and H. Xu, Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 165-190, https://doi.org/10.1137/S0895479800367439. · Zbl 1035.49022
[2] P. Benner, M. Köhler, and J. Saak, Fast approximate solution of the non-symmetric generalized eigenvalue problem on multicore architectures, in Parallel Computing: Accelerating Computational Science and Engineering (CSE), M. Bader, A. Bodeand, H.-J. Bungartz, M. Gerndt, G. R. Joubert, and F. Peters, eds., Adv. Parallel Comput. 25, IOS Press, 2014, pp. 143-152, https://doi.org/10.3233/978-1-61499-381-0-143.
[3] P. Benner and T. Mitchell, Extended and improved criss-cross algorithms for computing the spectral value set abscissa and radius, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1325-1352, https://doi.org/10.1137/19M1246213. · Zbl 1457.93066
[4] P. Benner, V. Sima, and M. Voigt, Algorithm 961: Fortran 77 subroutines for the solution of skew-Hamiltonian/Hamiltonian eigenproblems, ACM Trans. Math. Software, 42 (2016), 24, https://doi.org/10.1145/2818313.
[5] J. V. Burke, A. S. Lewis, and M. L. Overton, Robust stability and a criss-cross algorithm for pseudospectra, IMA J. Numer. Anal., 23 (2003), pp. 359-375, https://doi.org/10.1093/imanum/23.3.359. · Zbl 1042.65060
[6] J. V. Burke, A. S. Lewis, and M. L. Overton, Pseudospectral components and the distance to uncontrollability, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 350-361, https://doi.org/10.1137/S0895479803433313. · Zbl 1078.93008
[7] R. Byers, A bisection method for measuring the distance of a stable matrix to the unstable matrices, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 875-881, https://doi.org/10.1137/0909059. · Zbl 0658.65044
[8] R. Byers, Detecting nearly uncontrollable pairs, in Signal Processing, Scattering and Operator Theory, and Numerical Methods, Vol. III, M. A. Kaashoek, J. H. Schuppen, and A. C. M. Ran, eds., Birkhäuser, Boston, MA, 1990, pp. 447-457. · Zbl 0722.93010
[9] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty, Oxford, UK, 2014, http://www.chebfun.org/docs/guide/.
[10] R. Eising, Between controllable and uncontrollable, Systems Control Lett., 4 (1984), pp. 263-264, https://doi.org/10.1016/S0167-6911(84)80035-3. · Zbl 0542.93007
[11] M. Embree and B. Keeler, Pseudospectra of matrix pencils for transient analysis of differential-algebraic equations, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1028-1054, https://doi.org/10.1137/15M1055012. · Zbl 1379.65058
[12] A. Fazzi, N. Guglielmi, and I. Markovsky, Computing common factors of matrix polynomials with applications in system and control theory, in Proceedings of the 58th IEEE Conference on Decision and Control (CDC), Nice, France, 2019, pp. 7721-7726, https://doi.org/10.1109/CDC40024.2019.9030137.
[13] M. Gao and M. Neumann, A global minimum search algorithm for estimating the distance to uncontrollability, Linear Algebra Appl., 188/189 (1993), pp. 305-350, https://doi.org/10.1016/0024-3795(93)90472-Z. · Zbl 0778.65049
[14] M. Gu, New methods for estimating the distance to uncontrollability, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 989-1003, https://doi.org/10.1137/S0895479897328856. · Zbl 0954.65056
[15] M. Gu, E. Mengi, M. L. Overton, J. Xia, and J. Zhu, Fast methods for estimating the distance to uncontrollability, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 477-502, https://doi.org/10.1137/05063060X. · Zbl 1115.65069
[16] M. Gu and M. L. Overton, An algorithm to compute \({Sep}_\lambda \), SIAM J. Matrix Anal. Appl., 28 (2006), pp. 348-359, https://doi.org/10.1137/050622584. · Zbl 1113.65031
[17] H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, BIT, 2 (1962), pp. 153-181, https://doi.org/10.1007/bf01957330. · Zbl 0109.34702
[18] I. Markovsky, A. Fazzi, and N. Guglielmi, Applications of polynomial common factor computation in signal processing, in Latent Variable Analysis and Signal Separation, Y. Deville, S. Gannot, R. Mason, M. D. Plumbley, and D. Ward, eds., Lecture Notes in Comput. Sci. 10891, Springer, Cham, 2018, pp. 99-106, https://doi.org/10.1007/978-3-319-93764-9_10.
[19] E. Mengi, Measures for Robust Stability and Controllability, Ph.D. thesis, New York University, New York, 2006, https://cs.nyu.edu/media/publications/mengi_emre.pdf.
[20] T. Mitchell, ROSTAPACK: RObust STAbility PACKage, http://timmitchell.com/software/ROSTAPACK.
[21] T. Mitchell, Fast Computation of \(sep_\lambda\) via Interpolation-Based Globality Certificates, preprint, https://arxiv.org/abs/1911.05136, 2019.
[22] T. Mitchell, Computing the Kreiss constant of a matrix, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 1944-1975, https://doi.org/10.1137/19M1275127. · Zbl 07324171
[23] C. Paige, Properties of numerical algorithms related to computing controllability, IEEE Trans. Automat. Control, 26 (1981), pp. 130-138. · Zbl 0463.93024
[24] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005. · Zbl 1085.15009
[25] T. G. Wright, EigTool, http://www.comlab.ox.ac.uk/pseudospectra/eigtool/, 2002.
[26] T. G. Wright and L. N. Trefethen, Pseudospectra of rectangular matrices, IMA J. Numer. Anal., 22 (2002), pp. 501-519, https://doi.org/10.1093/imanum/22.4.501. · Zbl 1038.65033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.