zbMATH — the first resource for mathematics

On Markov stochastic processes with local interaction for solving some applied problems. (English. Russian original) Zbl 1305.60102
Cybern. Syst. Anal. 47, No. 3, 346-359 (2011); translation from Kibern. Sist. Anal. 2011, No. 3, 15-32 (2011).
Summary: Some problems arising in solving various applied problems of economy, recognition, sociology, biology, and modeling of catastrophes are considered. Such problems can be solved using methods of the theory of Markov random processes with local interaction. General characteristics of such processes and a number of concrete applied problems that can be modelled with their help are given.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI
[1] M. B. Averintsev, ”Description of Markov random fields using Gibbs conditional probabilities,” Probability Theory and Its Application, 17, 21–35 (1972).
[2] M. B. Averintsev, ”Gibbs description of random fields whose conditional probabilities may vanish,” Probl. Peredachi Inf., No. 4, 86–89 (1975).
[3] T. Liggett, Markov Processes with Local Interaction [Russian translation], Mir, Moscow (1989). · Zbl 0741.60102
[4] R. K. Chornei, H. Daduna, and P. S. Knopov, Control of Spatially Structured Random Processes and Random Fields with Applications, Springer, New York (2006). · Zbl 1170.93002
[5] N. B. Vasilyev and O. K. Kozlov, ”Reversible Markov chains with local interactions,” in: Multicomponent Random Systems, Nauka, Moscow (1978), pp. 83–100.
[6] O. N. Stavskaya, ”Gibbs invariant measures for Markov chains on finite lattices with local interaction,” Mat. Sb., 92, No. 3, 402–419 (1971).
[7] P. A. David and D. Foray, ”Percolation Structures, Markov random fields, and the economics of EDI Standard Diffusion,” in: Global Telecommunications Strategies and Technological Changes, North-Holland, Amsterdam (1993).
[8] Ya. G. Sinai, Theory of Phase Transitions [in Russian], Nauka, Moscow (1980).
[9] D. Ruel, Statistical Mechanics [Russian translation], Mir, Moscow (1971).
[10] P. S. Knopov, ”Markov fields and their applications in economics,” J. of Math. Sci., 97, No. 2, 3923–3931 (1999). · doi:10.1007/BF02366382
[11] M. I. Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition (Computational Imaging and Vision), Kluwer, Dordrecht-Boston-London (2002).
[12] G. L. Gimelfarb and A. V. Zalesnyi, ”Bayesian segmentation of images by using Markov fields models defined by Gibbs probability distributions,” in: Proc. 3th All-Union. Conf. on Computer-Aided Image Processing Systems, Leningrad (1989), pp. 22–23.
[13] A. V. Zalesnyi, Algorithms of Digital Processing of Images Described by Markov Random Fields, Ph.D. Thesis, V. M. Glushkov Institute of Cybernetics, Academy of Sciences of Ukraine, Kyiv (1991).
[14] A. Golodnikov, P. Knopov, P. Pardalos, and S. Uryasev, ”Optimization in the space of distribution functions and applications in the Bayes analysis,” in: Probabilistic Constrained Optimization: Methodology and Applications, Kluwer, Dordrecht–Boston–London (2000), pp. 102–131. · Zbl 1052.90592
[15] A. N. Golodnikov, P. S. Knopov, and V. A. Pepelyaev, ”Some approaches to pattern recognition problems,” Cybernetics and Systems Analysis, 43, No. 6, 810–821 (2007). · Zbl 1154.68484 · doi:10.1007/s10559-007-0105-z
[16] R. P. Kinderman and J. L. Snell, ”On the relation between Markov random fields and social networks,” J. of Math. Soc., 7, 1–13 (1980). · Zbl 0434.92023 · doi:10.1080/0022250X.1980.9989895
[17] Yu. Ermoliev, A. Gaivoronski, and M. Makowski, ”Robust design of networks under risks,” in: Coping with Uncertainty: Robust Solutions, Springer, Heidelberg (2010), pp. 101–137.
[18] Yu. M. Ermol’yev, T. Yu. Ermol’yeva, G. McDonald, and V. I. Norkin, ”Problems of insurance of catastrophic risks,” Cybernetics and Systems Analysis, 37, No. 2, 220–234 (2001). · Zbl 1055.91047 · doi:10.1023/A:1016798903215
[19] R. K. Chornei, H. Daduna, and P. S. Knopov, ”Controlled Markov fields with finite state space on graphs,” Stochastic Models, 21, 847–874 (2005). · Zbl 1082.60092 · doi:10.1080/15326340500294520
[20] I. M. Gelfand and M. L. Tsetlin, ”Mathematical modeling of mechanisms of the central nervous system,” in: Models of the Structurally Functional Organization of Some Biological Systems, Nauka, Moscow (1966), pp. 9–26.
[21] M. L. Tsetlin, Investigations on Automata Theory and Modeling of Biological Systems [in Russian], Nauka, Moscow (1969). · Zbl 0226.68042
[22] A. M. Leontovich, I. I. Pyatetskii–Shapiro, and O. N. Stavskaya, ”Some mathematical problems connected with morphogenesis,” Automat. Telemekh., No. 4, 94–107 (1970). · Zbl 0213.21902
[23] M. Apter, Cybernetics and Development [Russian translation], Mir, Moscow (1970).
[24] A. G. Gurvich, The Theory of the Biological Field [in Russian], Sov. Nauka, Moscow (1944).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.