×

zbMATH — the first resource for mathematics

Coxeter-Dynkin diagrams of fat points in \(\mathbb{C}^ 2\) and of their stabilizations. (English) Zbl 0864.32022
This paper gives a description of Coxeter-Dynkin diagrams for a class of 1-dimensional isolated complete intersection singularities (ICIS) in \(C^3\)-stabilizations of 0-dimensional ICIS (so called fat points) in \(\mathbb{C}^2\).
The method of computation of them is an appropriate generalization of the method of real morsification for plane curve singularities and is based on a search for a deformation of a singularity that basic vanishing cycles can be represented by “almost real” curves.
MSC:
32S30 Deformations of complex singularities; vanishing cycles
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
32S55 Milnor fibration; relations with knot theory
14B05 Singularities in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [A’C1] A’Campo, N.: Le groupe de monodromie du déploiement des singularités isolées de courbes planes I. Math. Ann. 213, 1-32 (1975). · Zbl 0316.14011 · doi:10.1007/BF01883883
[2] [A’C2] A’Campo, N: Le groupe de monodromie du déploiement des singularités isolées de courbes planes. II. In: Act. Cong. Int. Math. (Vanvouver 1974), Canad. Math. Congress, Montreal 1975, Vol. 1, pp. 395-404.
[3] [AGV] Arnold, V. I., Gusein-Zade, S. M., Varchenko, A. N.: Singularities of Differentiable Maps, Volume II, Birkhäuser, Boston, Basel, Berlin 1988.
[4] [BK] Balke, L., Kaenders, R.: On a certain type of Coxeter-Dynkin diagrams of plane curve singularities. Topology 35, 39-54 (1996). · Zbl 0868.14016 · doi:10.1016/0040-9383(95)00010-0
[5] [D] Dimca, A.: Topics on Real and Complex Singularities. Vieweg, Braunschweig, Wiesbaden 1987. · Zbl 0628.14001
[6] [DG] Dimca, A., Gibson, C. G.: Contact germs from the plane to the plane. Proc. Symp. in Pure Math. Vol. 40, Part 1, 277-282 (1983) · Zbl 0555.58005
[7] [Eb] Ebeling, W.: The Monodromy Groups of Isolated Singularities of Complete Intersections. Lecture Notes in Mathematics, vol. 1293, Springer-Verlag, Berlin etc., 1987. · Zbl 0683.32001
[8] [EGZ] Ebeling, W., Gusein-Zade, S. M.: Coxeter-Dynkin diagrams of the complete intersection singularitiesZ 9 andZ 10. Math. Z. 218, 549-562 (1995). · Zbl 0834.14002 · doi:10.1007/BF02571922
[9] [En] Enriques, F.: Le superficie algebriche. Nicola Zanichelli, Bologna 1949.
[10] [Gi1] Giusti, M.: Classification des singularités isolées d’intersections complètes simples. C.R. Acad. Sc. Paris, Sér. A, t. 284, 167-170 (1977).
[11] [Gi2] Giusti, M.: Classification des singularités isolées simples d’intersections complètes. Proc. Symp. in Pure Math. Vol. 40, Part 1, 457-494 (1983).
[12] [Go] Goryunov, V. V.: The intersection form of a plane isolated line singularity. In: Mond, D., Montaldi, J. (Eds.): Singularity Theory and its Applications, Warwick 1989, Part I (Lecture Notes in Mathematics, vol. 1462) Springer-Verlag, Berlin etc., 1991, pp. 172-184. · Zbl 0745.32018
[13] [GZ1] Gusein-Zade, S. M.: Intersection matrices for certain singularities of functions of two variables. Funktsional Anal. i Prilozhen. 8:1, 11-15 (1974) (Engl. translation in Functional Anal. Appl. 8, 10-13 (1974)). · Zbl 0304.14009 · doi:10.1007/BF02028301
[14] [GZ2] Gusein-Zade, S. M.: Dynkin diagrams for singularities of functions of two variables. Funktsional Anal. i Prilozhen. 8:4, 23-30 (1974) (Engl. translation in Functional Anal. Appl. 8, 295-300 (1974)). · Zbl 0304.14009 · doi:10.1007/BF02028301
[15] [GZ3] Gusein-Zade, S. M.: The index of a singular point of a gradient vector field. Funktsional Anal. i Prilozhen. 18:1, 7-12 (1984) (Engl. translation in Functional Anal. Appl. 18, 6-10 (1984)). · Zbl 0555.32006 · doi:10.1007/BF01076355
[16] [GZ4] Gusein-Zade, S. M.: Method of real morsifications for complete intersection singularities. C.R. Acad. Sc. Paris, t. 319, Sér. I, 391-396 (1994). · Zbl 0829.14022
[17] [K] Kluitmann, P.: Hurwitz action and finite quotients of braid groups. In: Proceedings of the conference on Artin’s braid group, Santa Cruz 1986. Contemporary Mathematics, Vol. 78, 1988, pp. 299-325.
[18] [W] Wall, C. T. C.: Classification of unimodal isolated singularities of complete intersections, Proc. Symp. in Pure Math. Vol. 40, Part 2, 625-640 (1983). · Zbl 0519.58013
[19] [Z1] Zariski, O.: Algebraic Surfaces. Second supplemented edition. Springer-Verlag, Berlin, Heidelberg, New York 1971.
[20] [Z2] Zariski, O.: Studies in equisingularity I, II, III, Amer. J. Math. 87, 507-536 (1965), 87, 972-1006 (1965), 90, 961-1023 (1968). · Zbl 0132.41601 · doi:10.2307/2373019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.