×

zbMATH — the first resource for mathematics

On entropy, entropy-like quantities, and applications. (English) Zbl 1359.37012
Summary: This is a review on entropy in various fields of mathematics and science. Its scope is to convey a unified vision of the classical entropies and some newer, related notions to a broad audience with an intermediate background in dynamical systems and ergodic theory. Due to the breadth and depth of the subject, we have opted for a compact exposition whose contents are a compromise between conceptual import and instrumental relevance. The intended technical level and the space limitation born furthermore upon the final selection of the topics, which cover the three items named in the title. Specifically, the first part is devoted to the avatars of entropy in the traditional contexts: many particle physics, information theory, and dynamical systems. This chronological order helps present the materials in a didactic manner. The axiomatic approach will be also considered at this stage to show that, quite remarkably, the essence of entropy can be encapsulated in a few basic properties. Inspired by the classical entropies, further akin quantities have been proposed in the course of time, mostly aimed at specific needs. A common denominator of those addressed in the second part of this review is their major impact on research. The final part shows that, along with its profound role in the theory, entropy has interesting practical applications beyond information theory and communications technology. For this sake we preferred examples from applied mathematics, although there are certainly nice applications in, say, physics, computer science and even social sciences. This review concludes with a representative list of references.

MSC:
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
28D20 Entropy and other invariants
37B40 Topological entropy
94A17 Measures of information, entropy
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Abe, Tsallis entropy: How unique?,, Contin. Mech. Thermodyn., 16, 237, (2004) · Zbl 1116.82310
[2] U. R. Acharya, Non-linear analysis of EEG signals at various sleep stages,, Comput. Meth. Prog. Bio., 80, 37, (2005)
[3] U. R. Acharya, Heart rate variability: A review,, Advances in Cardiac Signal Processing, 121, (2007)
[4] J. Aczél, Charakterisierung der Entropien positiver Ordnung und der Shannonschen Entropie,, Acta Math. Acad. Sci. Hung., 14, 95, (1963) · Zbl 0138.14904
[5] R. Adler, Topological entropy,, Trans. Amer. Mat. Soc., 114, 309, (1965) · Zbl 0127.13102
[6] R. L. Adler, Topological entropy and the equivalence of dynamical systems,, Mem. Amer. Math. Soc., 20, (1979) · Zbl 0412.54050
[7] V. Afraimovich, Directional complexity and entropy for lift mappings,, Discr. Contin. Dyn. Syst. B, 20, 3385, (2015) · Zbl 1358.37076
[8] L. Alsedà, <em>Combinatorial Dynamics and Entropy in Dimension One</em>,, World Scientific, (2000) · Zbl 0963.37001
[9] J. M. Amigó, Order patterns and chaos,, Phys. Lett. A, 355, 27, (2006)
[10] J. M. Amigó, True and false forbidden patterns in deterministic and random dynamics,, Eur. Phys. Lett., 79, (2007)
[11] J. M. Amigó, Forbidden ordinal patterns in higher dimensional dynamics,, Physica D, 237, 2893, (2008) · Zbl 1153.37309
[12] J. M. Amigó, Combinatorial detection of determinism in noisy time series,, Europhys. Lett., 82, (2008)
[13] J. M. Amigó, <em>Permutation Complexity in Dynamical Systems-Ordinal Patterns, Permutation Entropy, and All That</em>,, Springer Series in Synergetics, (2010) · Zbl 1197.37001
[14] J. M. Amigó, Detecting determinism in time series with ordinal patterns: A comparative study,, Int. J. Bif. Chaos, 20, 2915, (2010) · Zbl 1202.37116
[15] J. M. Amigó, Transcripts: An algebraic approach to coupled time series,, Chaos, 22, (2012) · Zbl 1331.37118
[16] J. M. Amigó, The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized,, Physica D, 241, 789, (2012) · Zbl 1246.37013
[17] J. M. Amigó, Permutation entropy: One concept, two approaches,, Eur. Phys. J. Special Topics, 222, 263, (2013)
[18] J. M. Amigó, Switching systems and entropy,, J. Diff. Eq. Appl., 19, 1872, (2013) · Zbl 1373.37046
[19] J. M. Amigó, Entropy increase in switching systems,, Entropy, 15, 2363, (2013) · Zbl 1310.37009
[20] J. M. Amigó, Dimensional reduction of conditional algebraic multi-information via transcripts,, Inform. Sciences, 278, 298, (2014) · Zbl 1391.94580
[21] J. M. Amigó, A simplified algorithm for the topological entropy of multimodal maps,, Entropy, 16, 627, (2014)
[22] J. M. Amigó, Ordinal symbolic analysis and its application to biomedical recordings · Zbl 1353.37022
[23] J. M. Amigó, Formulas for the topological entropy of multimodal maps based on min-max symbols,, Discr. Contin. Dyn. Syst. B, 20, 3415, (2015) · Zbl 1366.37034
[24] R. G. Andrzejak, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state,, Phys. Rev. E, 64, (2001)
[25] A. Antoniouk, Kolmogorov-Sinai entropy via separation properties of order-generated sigma-algebras,, Discr. Contin. Dyn. Syst. A, 34, 1793, (2014) · Zbl 1317.37010
[26] R. B. Ash, <em>Information Theory</em>,, Dover Publications, (1990) · Zbl 0768.94005
[27] C. Bandt, Entropy of interval maps via permutations,, Nonlinearity, 15, 1595, (2002) · Zbl 1026.37027
[28] E. Beadle, An overview of Rényi Entropy and some potential applications,, in 42nd Asilomar Conference on Signals, 1698, (2008)
[29] C. H. Bennet, Notes on Landauer’s principle, reversible computation and Maxwell’s demon,, Stud. Hist. Philos. M. P., 34, 501, (2003) · Zbl 1222.81039
[30] G. D. Birkhoff, Proof of a recurrence theorem for strongly transitive systems,, PNAS, 17, 650, (1931) · JFM 57.1011.01
[31] S. A. Borovkova, <em>Estimation and Prediction for Nonlinear Time Series</em>,, Ph.D thesis, (1998) · Zbl 1330.62335
[32] M. Boyle, Expansive subdynamics,, Trans. Amer. Math. Soc., 349, 55, (1997) · Zbl 0863.54034
[33] R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153, 401, (1971) · Zbl 0212.29201
[34] L. Bowen, A measure-conjugacy invariant for free group actions,, Ann. of Math., 171, 1387, (2010) · Zbl 1201.37007
[35] L. Bowen, Measure-conjugacy invariants for actions of countable sofic groups,, J. Amer. Math. Soc., 23, 217, (2010) · Zbl 1201.37005
[36] H. W. Broer, <em>Dynamical Systems and Chaos</em>,, Applied Mathematical Sciences, (2011) · Zbl 1218.37001
[37] M. Brin, On local entropy,, in Geometric dynamics (ed. J. Palis), 30, (1007)
[38] A. A. Bruzzo, Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study,, Neurol. Sci., 29, 3, (2008)
[39] N. Burioka, Approximate entropy in the electroencephalogram during wake and sleep,, Clin. EEG Neurosci., 36, 21, (2005)
[40] C. Cafaro, Causation entropy from symbolic representations of dynamical systems,, Chaos, 25, (2015) · Zbl 1374.37013
[41] J. S. Cánovas, Permutations and time series analysis,, Chaos, 19, (2009) · Zbl 1311.37063
[42] Y. Cao, Detecting dynamical changes in time series using the permutation entropy,, Phys. Rev. E, 70, (2004)
[43] A. Capurro, Tsallis entropy and cortical dynamics: The analysis of EEG signals,, Physica A, 257, 149, (1998)
[44] A. Capurro, Human brain dynamics: The analysis of EEG signals with Tsallis information measure,, Physica A, 265, 235, (1999)
[45] D. Carrasco-Olivera, Topological entropy for set-valued maps,, Discr. Contin. Dyn. Syst. B, 20, 3461, (2015) · Zbl 1366.37037
[46] H. C. Choe, <em>Computational Ergodic Theory</em>,, Algorithms and Computation in Mathematics, (2005) · Zbl 1064.37004
[47] R. Clausius, <em>The Mechanical Theory of Heat</em>,, MacMillan and Co., (1865) · JFM 04.0559.01
[48] M. Courbage, Space-time directional Lyapunov exponents for cellular automata,, J. Statis. Phys., 124, 1499, (2006) · Zbl 1110.68079
[49] T. M. Cover, <em>Elements of Information Theory</em>,, John Wiley & Sons, (2006) · Zbl 1140.94001
[50] B. Dai, Minimum conditional entropy clustering: A discriminative framework for clustering,, in JMLR: Workshop and Conference Proceedings, 47, (2010)
[51] K. Denbigh, How subjective is entropy,, in Maxwell’s Demon, 109, (1990)
[52] M. Denker, Finite generators for ergodic, measure-preserving transformation,, Zeit. Wahr. ver. Geb., 29, 45, (1974) · Zbl 0278.28006
[53] M. Denker, <em>Ergodic Theory on Compact Spaces</em>,, Lecture Notes in Mathematics, (1976) · Zbl 0328.28008
[54] M. Denker, Rigorous statistical procedures for data from dynamical systems,, J. Stat. Phys., 44, 67, (1986) · Zbl 0646.62109
[55] E. I. Dinaburg, The relation between topological entropy and metric entropy,, Soviet Math., 11, 13, (1970) · Zbl 0196.26401
[56] R. J. V. dos Santos, Generalization of Shannon’s theorem for Tsallis entropy,, J. Math. Phys., 38, 4104, (1997) · Zbl 0897.94007
[57] J.-P. Eckmann, Ergodic theory of chaos and strange attractors,, Rev. Mod. Phys., 57, 617, (1985) · Zbl 0989.37516
[58] M. Einsiedler, <em>Ergodic Theory with a View Towards Number Theory</em>,, Graduate Texts in Mathematics, (2011) · Zbl 1206.37001
[59] D. K. Faddeev, On the notion of entropy of finite probability distributions,, Usp. Mat. Nauk (in Russian), 11, 227, (1956) · Zbl 0071.13103
[60] F. Falniowski, On the connections of the generalized entropies and Kolmogorov-Sinai entropies,, Entropy, 16, 3732, (2014) · Zbl 1338.94036
[61] B. Frank, Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses,, Med. Biol. Eng. Comput., 44, 179, (2006)
[62] S. Furuichi, On uniqueness Theorems for Tsallis entropy and Tsallis relative entropy,, IEEE Trans. Inf. Theory, 51, 3638, (2005) · Zbl 1298.94038
[63] L. G. Gamero, Wavelet analysis and nonlinear dynamics in a nonextensive setting,, Physica A, 246, 487, (1997)
[64] P. G. Gaspard, Noise, chaos, and \((ε,τ)\)-entropy per unit time,, Phys. Rep., 235, 291, (1993)
[65] T. N. T. Goodman, Relating topological entropy and measure entropy,, Bull. London Math. Soc., 3, 176, (1971) · Zbl 0219.54037
[66] N. Gradojevic, Financial applications of nonextensive entropy,, IEEE Signal Process. Mag., 28, (2011)
[67] B. Graff, Entropy Measures of Heart Rate Variability for Short ECG Datasets in Patients with Congestive Heart Failure,, Acta Phys. Pol. B Proc. Suppl., 5, 153, (2012)
[68] C. W. J. Granger, Investigating causal relations by econometric models and cross-spectral methods,, Econometrica, 37, 424, (1969) · Zbl 1366.91115
[69] P. Grassberger, Dimensions and entropies of strange attractors from a fluctuating dynamics approach,, Physica D, 13, 34, (1984) · Zbl 0587.58031
[70] P. Grassberger, Measuring the strangeness of strange attractors,, Physica D, 9, 189, (1983) · Zbl 0593.58024
[71] P. Grassberger, Characterization of strange attractors,, Phys. Rev. Lett., 50, 346, (1983) · Zbl 0593.58024
[72] D. W. Hahs, Distinguishing anticipation from causality: Anticipatory bias in the estimation of information flow,, Phys. Rev. Lett., 107, (2011)
[73] R. Hanel, A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and equidistribution functions,, EPL, 93, (2011)
[74] R. Hanel, Generalized entropies and logarithms and their duality relations,, Proceed. Nat. Acad. Scie., 109, 19151, (2012)
[75] B. Hasselblatt, Principal structures,, in Handbook of Dynamical Systems (eds. B. Hasselblatt and A. Katok), 1, (2002) · Zbl 1047.37001
[76] J. Havrda, Quantification method of classification processes. Concept of structural \(α\)-entropy,, Kybernetika, 3, 30, (1967) · Zbl 0178.22401
[77] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system,, Math. Syst. Theory, 3, 320, (1969) · Zbl 0182.56901
[78] H. G. E. Hentschel, The infinite number of generalized dimensions of fractals and strange attractors,, Physica D, 8, 435, (1983) · Zbl 0538.58026
[79] R. Hornero, Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease,, Phil. Trans. R. Soc. A, 367, 317, (2009) · Zbl 1221.94016
[80] V. M. Ilić, Comments on ”Generalization of Shannon-Khinchin axioms to nonextensive systems and the uniqueness theorem for the nonextensive entropy”,, IEEE Trans. Inf. Theory, 59, 6950, (2013)
[81] E. T. Jaynes, Information theory and statistical mechanics,, Phys. Rev., 106, 620, (1957) · Zbl 0084.43701
[82] P. Jizba, The world according to Rényi: Thermodynamics of multifractal systems,, Ann. Phys., 312, 17, (2004) · Zbl 1044.82001
[83] C. C. Jouny, Characterization of early partial seizure onset: Frequency, complexity and entropy,, Clin. Neurophysiol., 123, 658, (2012)
[84] N. Kannathal, Entropies for detection of epilepsy in EEG,, Comput. Meth. Prog. Bio., 80, 187, (2005)
[85] H. Kantz, <em>Nonlinear Time Series Analysis</em>,, Cambridge University Press, (2004) · Zbl 1050.62093
[86] A. Katok, Fifty years of entropy in dynamics: 1978-2007,, J. Mod. Dyn., 1, 545, (2007) · Zbl 1149.37001
[87] K. Keller, Symbolic analysis of high-dimensional time series,, Int. J. Bif. Chaos, 13, 2657, (2003) · Zbl 1046.37054
[88] K. Keller, Permutations and the Kolmogorov-Sinai entropy,, Discr. Contin. Dyn. Syst. A, 32, 891, (2012) · Zbl 1241.28012
[89] K. Keller, Ordinal Patterns, Entropy, and EEG,, Entropy, 16, 6212, (2014)
[90] K. Keller, Entropy determination based on the ordinal structure of a dynamical system,, Discr. Contin. Dyn. Syst. B, 20, 3507, (2015) · Zbl 1366.37016
[91] A. I. Khinchin, <em>Mathematical Foundations of Information Theory</em>,, Dover, (1957) · Zbl 0088.10404
[92] A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and Lebesgue space endomorphisms,, Dokl. Acad. Sci. USSR, 119, 861, (1958) · Zbl 0083.10602
[93] S. Kolyada, Topological entropy of nonautonomous dynamical systems,, Random Comput. Dynam., 4, 205, (1996) · Zbl 0909.54012
[94] Z. S. Kowalski, Finite generators of ergodic endomorphisms,, Colloq. Math., 49, 87, (1984) · Zbl 0598.28024
[95] Z. S. Kowalski, Minimal generators for aperiodic endomorphisms,, Commentat. Math. Univ. Carol., 36, 721, (1995) · Zbl 0840.28006
[96] W. Krieger, On entropy and generators of measure-preserving transformations,, Trans. Amer. Math. Soc., 149, 453, (1970) · Zbl 0204.07904
[97] J. Kurths, Quantitative analysis of heart rate variability,, Chaos, 5, 88, (1995)
[98] D. E. Lake, Sample entropy analysis of neonatal heart rate variability,, Am. J. Physiol.-Reg. I., 283, 789, (2002)
[99] A. M. Law, <em>Simulation, Modeling, and Analysis</em>,, McGraw-Hill, (2000)
[100] F. Ledrappier, The metric entropy of diffeomorphisms. II. Relations betweenentropy, exponents and dimension,, Ann. Math., 122, 540, (1985) · Zbl 1371.37012
[101] X. Li, Predictability analysis of absence seizures with permutation entropy,, Epilepsy Res., 77, 70, (2007)
[102] J. Li, Using permutation entropy to measure the changes in eeg signals during absence seizures,, Entropy, 16, 3049, (2014)
[103] H. Li, Minimum entropy clustering and applications to gene expression analysis,, in Proc. IEEE Comput. Syst. Bioinform. Conf., 142, (2004)
[104] Z. Liang, EEG entropy measures in anesthesia,, Front. Comput. Neurosci., 9, (2015)
[105] D. Lind, <em>An Introduction to Symbolic Dynamics and Coding</em>,, Cambridge University Press, (1995) · Zbl 1106.37301
[106] J. Llibre, Brief survey on the topological entropy,, Discr. Contin. Dyn. Syst. B, 20, 3363, (2015) · Zbl 1343.37002
[107] N. Mammone, Automatic artifact rejection from multichannel scalp EEG by wavelet ICA,, IEEE Sens. J., 12, 533, (2012)
[108] M. Matilla-García, A non-parametric test for independence based on symbolic dynamics,, J. Econ. Dyn. Control, 31, 3889, (2007) · Zbl 1163.62324
[109] M. Matilla-García, A non-parametric independence test using permutation entropy,, J. Econ., 144, 139, (2008) · Zbl 1418.62200
[110] A. M. Mesón, On the Kolmogorov-like generalization of Tsallis entropy, correlation entropies and multifractal analysis,, J. Math. Phys., 43, 904, (2002) · Zbl 1059.94005
[111] R. Miles, Directional uniformities, periodic points, and entropy,, Discr. Contin. Dyn. Syst. B, 20, 3525, (2015) · Zbl 1347.37035
[112] J. Milnor, On the entropy geometry of cellular automata,, Complex Systems, 2, 357, (1988) · Zbl 0672.68025
[113] J. Milnor, On iterated maps of the interval,, in Dynamical Systems (ed. J. C. Alexander), 465, (1342)
[114] M. Misiurewicz, Entropy of piecewise monotone mappings,, Studia Math., 67, 45, (1980) · Zbl 0445.54007
[115] M. Misiurewicz, Permutations and topological entropy for interval maps,, Nonlinearity, 16, 971, (2003) · Zbl 1030.37025
[116] R. Monetti, Permutation complexity of interacting dynamical systems,, Eur. Phys. J. Special Topics, 222, 421, (2013)
[117] R. Monetti, Information directionality in coupled time series using transcripts,, Phys. Rev. E, 88, (2013)
[118] F. C. Morabito, Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG,, Entropy, 14, 1186, (2012) · Zbl 1314.92042
[119] N. Nicolaou, The use of permutation entropy to characterize sleep electroencephalograms,, Clin. EEG Neurosci., 42, 24, (2011)
[120] D. Ornstein, Two Bernoulli shifts with the same entropy are isomorphic,, Adv. Math., 4, 337, (1970) · Zbl 0197.33502
[121] D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic,, Adv. Math., 5, 339, (1970) · Zbl 0227.28014
[122] D. Ornstein, Entropy and isomorphism theorem for actions of amenable groups,, J. Analyse Math., 48, 1, (1987) · Zbl 0637.28015
[123] D. Ornstein, Newton’s law and coin tossing,, Notices Amer. Math. Soc., 60, 450, (2013) · Zbl 1358.37007
[124] D. Ornstein, Entropy is the only finitely observable invariant,, J. Mod. Dyn., 1, 93, (2007) · Zbl 1109.37005
[125] G. Ouyang, Ordinal pattern based similarity analysis for EEG recordings,, Clin. Neurophysiol, 121, 694, (2010)
[126] S. Y. Park, Maximum entropy autoregressive conditional heretoskedasticity model,, J. Econometrics, 150, 219, (2009) · Zbl 1429.62691
[127] U. Parlitz, Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics,, Comput. Biol. Med., 42, 319, (2012)
[128] W. Parry, Intrinsic Markov chains,, Trans. Amer. Math. Soc., 112, 55, (1964) · Zbl 0127.35301
[129] Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32, 55, (1977) · Zbl 0383.58011
[130] S. M. Pincus, Approximate entropy as a measure of system complexity,, PNAS, 88, 2297, (1991) · Zbl 0756.60103
[131] S. M. Pincus, Approximate entropy: A regularity measure for fetal heart rate analysis,, Obstet. Gynecol., 79, 249, (1992)
[132] S. M. Pincus, Approximate entropy as a measure of irregularity for psychiatric serial metrics,, Bipolar Disord., 8, 430, (2006)
[133] B. Pompe, Momentary information transfer as a coupling measure of time series,, Phys. Rev. E, 83, (2011)
[134] J. Poza, Regional analysis of spontaneous MEG rhythms in patients with Alzheimer’s disease using spectral entropies,, Ann. Biomed. Eng., 36, 141, (2008)
[135] J. C. Principe, <em>Information Theoretic Learning. Renyi’s Entropy and Kernel Perspectives</em>,, Springer, (2010) · Zbl 1206.94003
[136] A. Rényi, On measures of entropy and information,, in Proceedings of the 4th Berkeley Symposium on Mathematics, 547, (1961)
[137] J. S. Richman, Physiological time-series analysis using approximate entropy and sample entropy,, Am. J. Physiol.-Heart C., 278, 2039, (2000)
[138] S. J. Roberts, Minimum entropy data partitioning,, in Proceedings of International Conference on Artificial Neural Networks, 844, (1999)
[139] E. A. Robinson, Rank-one \(\mathbbZ^d\) actions and directional entropy,, Ergod. Theor. Dynam. Syst., 31, 285, (2011) · Zbl 1233.37004
[140] O. A. Rosso, Brain electrical activity analysis using wavelet-based informational tools,, Physica A, 313, 587, (2002) · Zbl 1011.92012
[141] D. Rudolph, Entropy and mixing for amenable group actions,, Ann. of Math., 151, 1119, (2000) · Zbl 0957.37003
[142] D. Ruelle, Statistical mechanics on a compact set with \(Z^{ν}\) action satisfying expansiveness and specification,, Trans. Amer. Math. Soc., 187, 237, (1973) · Zbl 0278.28012
[143] J. Runge, Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy,, Phys. Rev. E, 86, (2012)
[144] X. San Liang, Unraveling the cause-effect relation between time series,, Phys. Rev. E, 90, (2014)
[145] T. Schreiber, Measuring information transfer,, Phys. Rev. Lett., 85, 461, (2000)
[146] C. E. Shannon, A mathematical theory of communication,, Bell Syst. Tech. J., 27, 379, (1948) · Zbl 1154.94303
[147] Y. G. Sinai, On the notion of entropy of dynamical systems,, Dokl. Acad. Sci. USSR, 125, 768, (1959) · Zbl 0086.10102
[148] Y. G. Sinai, Flows with finite entropy,, Dokl. Acad. Sci. USSR, 125, 1200, (1959) · Zbl 0117.35202
[149] Y. G. Sinai, Gibbs measures in ergodic theory,, Uspehi Mat. Nauk, 27, 21, (1972) · Zbl 0246.28008
[150] D. Smirnov, Spurious causalities with transfer entropy,, Phys. Rev. E, 87, (2013)
[151] M. Smorodinsky, <em>Ergodic Theory, Entropy</em>,, Lectures Notes in Mathematics, (1971) · Zbl 0213.07502
[152] R. Sneddon, The Tsallis entropy of natural information,, Physica A, 386, 101, (2007)
[153] V. Srinivasan, Approximate entropy-based epileptic EEG detection using artificial neural networks,, IEEE T. Inf. Technol. B., 11, 288, (2007)
[154] H. Suyari, Generalization of Shannon-Khinchin axioms to nonextensive systems and the uniqueness theorem for the nonextensive entropy,, IEEE T. Inform. Theory, 50, 1783, (2004) · Zbl 1298.94040
[155] F. Takens, Detecting strange attractors in turbulence,, in Dynamical Systems and Turbulence (eds. D. A. Rand and L. S. Young), 366, (1981) · Zbl 0513.58032
[156] F. Takens, Rényi entropies of aperiodic dynamical systems,, Israel J. Math., 127, 279, (2002) · Zbl 1044.37005
[157] F. Takens, Generalized entropies: Rényi and correlation integral approach,, Nonlinearity, 11, 771, (1998) · Zbl 0943.37004
[158] S. Tong, Parameterized entropy analysis of EEG following hypoxicischemic brain injury,, Phys. Lett. A, 314, 354, (2003) · Zbl 1038.92022
[159] M. E. Torres, Relative complexity changes in time series using information measures,, Physica A, 286, 457, (2000) · Zbl 1052.62540
[160] B. Tóthmérész, Comparison of different methods for diversity ordering,, J. Veg. Sci., 6, 283, (1995)
[161] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics,, J. Stat. Phys., 52, 479, (1988) · Zbl 1082.82501
[162] C. Tsallis, The nonadditive entropy Sq and its applications in physics and elsewhere: Some remarks,, Entropy, 13, 1765, (2011) · Zbl 1301.82004
[163] A. M. Unakafov, Conditional entropy of ordinal patterns,, Physica D, 269, 94, (2014) · Zbl 1286.37069
[164] V. A. Unakafova, <em>Investigating Measures of Complexity for Dynamical Systems and for Time Series</em>,, Ph.D thesis, (2015)
[165] E. A. Verbitskiy, <em>Generalized Entropies in Dynamical Systems</em>,, Ph.D thesis, (2000)
[166] A. Voss, Methods derived from nonlinear dynamics for analysing heart rate variability,, Phil. Trans. R. Soc. A, 367, 277, (2009) · Zbl 1221.94025
[167] P. Walters, <em>An Introduction to Ergodic Theory</em>,, Springer Verlag, (1982) · Zbl 0475.28009
[168] B. Weiss, Subshifts of finite type and sofic systems,, Monats. Math., 77, 462, (1973) · Zbl 0285.28021
[169] B. Weiss, Entropy and actions of sofic groups,, Discr. Contin. Dyn. Syst. B, 20, 3375, (2015) · Zbl 1343.37003
[170] N. Wiener, The theory of prediction,, in Modern Mathematics for the Engineer (ed. E. F. Beckenbach), (1956)
[171] A. D. Wissner-Gross, Causal entropic forces,, Phys. Rev. Lett., 110, (2013)
[172] M. Zanin, Permutation entropy and its main biomedical and econophysics applications: A review,, Entropy, 14, 1553, (2012) · Zbl 1314.94033
[173] D. Zhang, Application of Tsallis entropy to EEG: Quantifying the presence of burst suppression after asphyxial cardiac arrest in rats,, IEEE Trans. Bio.-Med. Eng., 57, 867, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.