Rosales-Quintero, J. E. Antiself-dual gravity and supergravity from a pure connection formulation. (English) Zbl 1342.83287 Int. J. Mod. Phys. A 31, No. 12, Article ID 1650064, 15 p. (2016). Cited in 1 Document MSC: 83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories 83E50 Supergravity 53Z05 Applications of differential geometry to physics 83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems) 83C40 Gravitational energy and conservation laws; groups of motions 81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics Keywords:pure connection gravity; supergravity; antiself-dual gravity; Capovilla, Dell and Jacobson approach; Bianchi identity PDF BibTeX XML Cite \textit{J. E. Rosales-Quintero}, Int. J. Mod. Phys. A 31, No. 12, Article ID 1650064, 15 p. (2016; Zbl 1342.83287) Full Text: DOI arXiv References: [1] 1. J. F. Plebański, J. Math. Phys.18, 2511 (1977). genRefLink(16, ’S0217751X16500640BIB001’, ’10.1063%252F1.523215’); genRefLink(128, ’S0217751X16500640BIB001’, ’A1977ED84200036’); genRefLink(64, ’S0217751X16500640BIB001’, ’1977JMP....18.2511P’); [2] 2. R. Capovilla, J. Dell, T. Jacobson and L. Mason, Class. Quantum Grav.8, 41 (1991). genRefLink(16, ’S0217751X16500640BIB002’, ’10.1088%252F0264-9381%252F8%252F1%252F009’); genRefLink(128, ’S0217751X16500640BIB002’, ’A1991ET32100009’); genRefLink(64, ’S0217751X16500640BIB002’, ’1991CQGra...8...41C’); [3] 3. I. Bengtsson, J. Math. Phys.32, 3158 (1991). genRefLink(16, ’S0217751X16500640BIB003’, ’10.1063%252F1.529473’); genRefLink(128, ’S0217751X16500640BIB003’, ’A1991GL51300031’); genRefLink(64, ’S0217751X16500640BIB003’, ’1991JMP....32.3158B’); [4] 4. K. Krasnov, Phys. Rev. D84, 024034 (2011). genRefLink(16, ’S0217751X16500640BIB004’, ’10.1103%252FPhysRevD.84.024034’); genRefLink(128, ’S0217751X16500640BIB004’, ’000292875600004’); genRefLink(64, ’S0217751X16500640BIB004’, ’2011PhRvD..84b4034K’); [5] 5. L. Smolin, Phys. Rev. D80, 124017 (2009). genRefLink(16, ’S0217751X16500640BIB005’, ’10.1103%252FPhysRevD.80.124017’); genRefLink(128, ’S0217751X16500640BIB005’, ’000273233300086’); genRefLink(64, ’S0217751X16500640BIB005’, ’2009PhRvD..80l4017S’); [6] 6. K. Krasnov, Proc. R. Soc. A468, 2129 (2012). genRefLink(16, ’S0217751X16500640BIB006’, ’10.1098%252Frspa.2011.0638’); genRefLink(64, ’S0217751X16500640BIB006’, ’2012RSPSA.468.2129K’); [7] 7. T. Jacobson, Class. Quantum Grav.5, 923 (1988). genRefLink(16, ’S0217751X16500640BIB007’, ’10.1088%252F0264-9381%252F5%252F6%252F012’); genRefLink(128, ’S0217751X16500640BIB007’, ’A1988N693400012’); genRefLink(64, ’S0217751X16500640BIB007’, ’1988CQGra...5..923J’); [8] 8. S. V. Ketov, H. Nishino and S. J. Gates Jr., Nucl. Phys. B393, 149 (1993). genRefLink(16, ’S0217751X16500640BIB008’, ’10.1016%252F0550-3213%252893%252990242-H’); genRefLink(128, ’S0217751X16500640BIB008’, ’A1993KW25400009’); genRefLink(64, ’S0217751X16500640BIB008’, ’1993NuPhB.393..149K’); [9] 9. H. García-Compeán, H. A. Nieto, O. Obregón and C. Ramírez, Phys. Rev. D59, 124003 (1999). genRefLink(16, ’S0217751X16500640BIB009’, ’10.1103%252FPhysRevD.59.124003’); genRefLink(64, ’S0217751X16500640BIB009’, ’1999PhRvD..59l4003G’); [10] 10. J. C. Baez, Lect. Notes Phys.543, 25 (2000). [11] 11. K. Krasnov, Gen. Relativ. Gravit.43, 1 (2011). genRefLink(16, ’S0217751X16500640BIB011’, ’10.1007%252Fs10714-010-1061-x’); genRefLink(128, ’S0217751X16500640BIB011’, ’000286334300001’); genRefLink(64, ’S0217751X16500640BIB011’, ’2011GReGr..43....1K’); [12] 12. L. Freidel, K. Krasnov and R. Puzio, Adv. Theor. Math. Phys.3, 1289 (1999). genRefLink(16, ’S0217751X16500640BIB012’, ’10.4310%252FATMP.1999.v3.n5.a3’); [13] 13. C. Ramírez and E. Rosales, Int. J. Mod. Phys. A27, 1250080 (2012). [Abstract] genRefLink(128, ’S0217751X16500640BIB013’, ’000304601800007’); genRefLink(64, ’S0217751X16500640BIB013’, ’2012IJMPA..2750080R’); [14] 14. J. A. De Azcarraga, A. J. Macfarlane, A. J. Mountain and J. C. Pérez Bueno, Nucl. Phys. B510, 657 (1998). genRefLink(16, ’S0217751X16500640BIB014’, ’10.1016%252FS0550-3213%252897%252900609-3’); genRefLink(128, ’S0217751X16500640BIB014’, ’000071955400008’); genRefLink(64, ’S0217751X16500640BIB014’, ’1998NuPhB.510..657D’); [15] 15. M. L. Metha, J. M. Normand and V. Gupta, Commun. Math. Phys.90, 69 (1983). genRefLink(16, ’S0217751X16500640BIB015’, ’10.1007%252FBF01209387’); genRefLink(128, ’S0217751X16500640BIB015’, ’A1983RB66600003’); genRefLink(64, ’S0217751X16500640BIB015’, ’1983CMaPh..90...69M’); [16] 16. L. Smolin and S. Speziale, Phys. Rev. D81, 024032 (2010). genRefLink(16, ’S0217751X16500640BIB016’, ’10.1103%252FPhysRevD.81.024032’); genRefLink(128, ’S0217751X16500640BIB016’, ’000275068900080’); genRefLink(64, ’S0217751X16500640BIB016’, ’2010PhRvD..81b4032S’); [17] 17. R. Capovilla, M. Montesinos, V. A. Prieto and E. Rojas, Class. Quantum Grav.18, 1157 (2001). genRefLink(16, ’S0217751X16500640BIB017’, ’10.1088%252F0264-9381%252F18%252F6%252F501’); genRefLink(128, ’S0217751X16500640BIB017’, ’000168025500013’); genRefLink(64, ’S0217751X16500640BIB017’, ’2001CQGra..18.1157C’); [18] 18. L. Freidel and S. Speziale, SIGMA8, 32 (2012). [19] 19. L. Smolin, Quantum gravity with a positive cosmological constant, arXiv:hep-th/0209079 [arXiv] . [20] 20. R. Capovilla, J. Dell and T. Jacobson, Class. Quantum Grav.8, 59 (1991). genRefLink(16, ’S0217751X16500640BIB020’, ’10.1088%252F0264-9381%252F8%252F1%252F010’); genRefLink(128, ’S0217751X16500640BIB020’, ’A1991ET32100010’); genRefLink(64, ’S0217751X16500640BIB020’, ’1991CQGra...8...59C’); [21] 21. R. Capovilla, J. Dell and T. Jacobson, Class. Quantum Grav.7, L1 (1990). genRefLink(16, ’S0217751X16500640BIB021’, ’10.1088%252F0264-9381%252F7%252F1%252F001’); genRefLink(128, ’S0217751X16500640BIB021’, ’A1990CJ10000001’); genRefLink(64, ’S0217751X16500640BIB021’, ’1990CQGra...7....1C’); [22] 22. C. G. Torre, Phys. Rev. D41, 3620 (1990). genRefLink(16, ’S0217751X16500640BIB022’, ’10.1103%252FPhysRevD.41.3620’); genRefLink(128, ’S0217751X16500640BIB022’, ’A1990DJ80400006’); genRefLink(64, ’S0217751X16500640BIB022’, ’1990PhRvD..41.3620T’); [23] 23. T. Newman, A. I. Janis and J. R. Porter (eds.), Recent Advances in General Relativity: Essays in Honor of Ted Newman, Einstein Studies, Vol. 4 (Birkhäuser, 1992). · Zbl 0840.53076 [24] 24. R. Penrose and W. Rindler, Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1987). · Zbl 0538.53024 [25] 25. J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton University Press, 1992), revised edition. [26] 26. P. K. Townsend, Phys. Rev. D15, 2802 (1977). genRefLink(16, ’S0217751X16500640BIB026’, ’10.1103%252FPhysRevD.15.2802’); genRefLink(128, ’S0217751X16500640BIB026’, ’A1977DK70400012’); genRefLink(64, ’S0217751X16500640BIB026’, ’1977PhRvD..15.2802T’); [27] 27. J. E. Rosales-Quintero, Gravity and supergravity from a pure connection formulation, manuscript in progress. · Zbl 1342.83287 [28] 28. O. J. Berra-Montiel and J. E. Rosales-Quintero, Canonical analysis of the pure connection gravity theory and the Kodama state, manuscript in progress. · Zbl 1325.83020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.