Lasiecka, Irena; Priyasad, Buddhika; Triggiani, Roberto Uniform stabilization of Boussinesq systems in critical \(\mathbf{L}^q \)-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls. (English) Zbl 1452.35229 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 4071-4117 (2020). MSC: 35Q93 35B35 35K40 93C20 93B52 76D05 80A17 PDF BibTeX XML Cite \textit{I. Lasiecka} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 4071--4117 (2020; Zbl 1452.35229) Full Text: DOI
Boulakia, Muriel; Burman, Erik; Fernández, Miguel A.; Voisembert, Colette Data assimilation finite element method for the linearized Navier-Stokes equations in the low Reynolds regime. (English) Zbl 1445.35323 Inverse Probl. 36, No. 8, Article ID 085003, 22 p. (2020). MSC: 35R30 35Q30 65M60 PDF BibTeX XML Cite \textit{M. Boulakia} et al., Inverse Probl. 36, No. 8, Article ID 085003, 22 p. (2020; Zbl 1445.35323) Full Text: DOI
Roy, Arnab; Takahashi, Takéo Local null controllability of a rigid body moving into a Boussinesq flow. (English) Zbl 1437.35547 Math. Control Relat. Fields 9, No. 4, 793-836 (2019). MSC: 35Q30 93C20 76D05 93B05 74F10 PDF BibTeX XML Cite \textit{A. Roy} and \textit{T. Takahashi}, Math. Control Relat. Fields 9, No. 4, 793--836 (2019; Zbl 1437.35547) Full Text: DOI
Mitra, Sourav Stabilization of the non-homogeneous Navier-Stokes equations in a 2d channel. (English) Zbl 07194605 ESAIM, Control Optim. Calc. Var. 25, Paper No. 66, 35 p. (2019). MSC: 35K55 76D05 76D55 93D15 93D30 PDF BibTeX XML Cite \textit{S. Mitra}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 66, 35 p. (2019; Zbl 07194605) Full Text: DOI
Raymond, Jean-Pierre Stabilizability of infinite-dimensional systems by finite-dimensional controls. (English) Zbl 1432.93263 Comput. Methods Appl. Math. 19, No. 4, 797-811 (2019); retraction ibid. 20, No. 2, 395 (2020). MSC: 93D05 93C25 93B52 93C20 76D55 PDF BibTeX XML Cite \textit{J.-P. Raymond}, Comput. Methods Appl. Math. 19, No. 4, 797--811 (2019; Zbl 1432.93263) Full Text: DOI
Delay, Guillaume Local stabilization of a fluid-structure system around a stationary state with a structure given by a finite number of parameters. (English) Zbl 1434.35047 SIAM J. Control Optim. 57, No. 6, 4063-4098 (2019). MSC: 35Q30 74F10 76D55 93D15 PDF BibTeX XML Cite \textit{G. Delay}, SIAM J. Control Optim. 57, No. 6, 4063--4098 (2019; Zbl 1434.35047) Full Text: DOI
Raymond, Jean-Pierre Stabilizability of infinite dimensional systems by finite dimensional control. (English) Zbl 1422.93158 Comput. Methods Appl. Math. 19, No. 2, 267-282 (2019). MSC: 93D15 93C25 PDF BibTeX XML Cite \textit{J.-P. Raymond}, Comput. Methods Appl. Math. 19, No. 2, 267--282 (2019; Zbl 1422.93158) Full Text: DOI
Burman, Erik; Hansbo, Peter Stabilized nonconforming finite element methods for data assimilation in incompressible flows. (English) Zbl 1404.76157 Math. Comput. 87, No. 311, 1029-1050 (2018). Reviewer: Pavel Burda (Praha) MSC: 76M10 65N30 65N20 65N12 76D07 76D55 PDF BibTeX XML Cite \textit{E. Burman} and \textit{P. Hansbo}, Math. Comput. 87, No. 311, 1029--1050 (2018; Zbl 1404.76157) Full Text: DOI arXiv
Maity, Debayan; Raymond, Jean-Pierre Feedback stabilization of the incompressible Navier-Stokes equations coupled with a damped elastic system in two dimensions. (English) Zbl 1386.93153 J. Math. Fluid Mech. 19, No. 4, 773-805 (2017). MSC: 93C20 93B52 93D15 35Q30 76D05 74F10 PDF BibTeX XML Cite \textit{D. Maity} and \textit{J.-P. Raymond}, J. Math. Fluid Mech. 19, No. 4, 773--805 (2017; Zbl 1386.93153) Full Text: DOI
Hishida, Toshiaki; Silvestre, Ana Leonor; Takahashi, Takéo A boundary control problem for the steady self-propelled motion of a rigid body in a Navier-Stokes fluid. (English) Zbl 06810625 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 6, 1507-1541 (2017). MSC: 76D55 76D03 70Q05 35Q30 35Q93 PDF BibTeX XML Cite \textit{T. Hishida} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 6, 1507--1541 (2017; Zbl 06810625) Full Text: DOI
Badra, Mehdi; Takahashi, Takéo Feedback boundary stabilization of 2D fluid-structure interaction systems. (English) Zbl 1357.93054 Discrete Contin. Dyn. Syst. 37, No. 5, 2315-2373 (2017). MSC: 93C20 93D15 74F10 76D55 76D05 35Q30 PDF BibTeX XML Cite \textit{M. Badra} and \textit{T. Takahashi}, Discrete Contin. Dyn. Syst. 37, No. 5, 2315--2373 (2017; Zbl 1357.93054) Full Text: DOI
Çamliyurt, Güher; Kukavica, Igor A local asymptotic expansion for a solution of the Stokes system. (English) Zbl 1351.76021 Evol. Equ. Control Theory 5, No. 4, 647-659 (2016). MSC: 76D07 34A12 35Q30 PDF BibTeX XML Cite \textit{G. Çamliyurt} and \textit{I. Kukavica}, Evol. Equ. Control Theory 5, No. 4, 647--659 (2016; Zbl 1351.76021) Full Text: DOI
Glass, O.; Horsin, T. Lagrangian controllability at low Reynolds number. (English) Zbl 1388.93020 ESAIM, Control Optim. Calc. Var. 22, No. 4, 1040-1053 (2016). MSC: 93B05 76D07 76D55 93C20 35Q30 PDF BibTeX XML Cite \textit{O. Glass} and \textit{T. Horsin}, ESAIM, Control Optim. Calc. Var. 22, No. 4, 1040--1053 (2016; Zbl 1388.93020) Full Text: DOI arXiv
Badra, Mehdi; Caubet, Fabien; Dardé, Jérémi Stability estimates for Navier-Stokes equations and application to inverse problems. (English) Zbl 1348.35310 Discrete Contin. Dyn. Syst., Ser. B 21, No. 8, 2379-2407 (2016). MSC: 35R30 35Q30 76D07 76D05 PDF BibTeX XML Cite \textit{M. Badra} et al., Discrete Contin. Dyn. Syst., Ser. B 21, No. 8, 2379--2407 (2016; Zbl 1348.35310) Full Text: DOI
Boulakia, Muriel Quantification of the unique continuation property for the nonstationary Stokes problem. (English) Zbl 1331.35383 Math. Control Relat. Fields 6, No. 1, 27-52 (2016). MSC: 35R30 35B35 76D07 PDF BibTeX XML Cite \textit{M. Boulakia}, Math. Control Relat. Fields 6, No. 1, 27--52 (2016; Zbl 1331.35383) Full Text: DOI
Cannarsa, Piermarco; Martinez, Patrick; Vancostenoble, Judith Global Carleman estimates for degenerate parabolic operators with applications. (English) Zbl 1328.35114 Mem. Am. Math. Soc. 1133, ix, 207 p. (2016). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K65 35R30 93B05 93B07 93C20 26D10 PDF BibTeX XML Cite \textit{P. Cannarsa} et al., Global Carleman estimates for degenerate parabolic operators with applications. Providence, RI: American Mathematical Society (AMS) (2016; Zbl 1328.35114) Full Text: DOI
Nguyen, Phuong Anh; Raymond, Jean-Pierre Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions. (English) Zbl 1327.93194 SIAM J. Control Optim. 53, No. 5, 3006-3039 (2015). MSC: 93B52 93C20 93D15 35Q30 76D55 76D05 76D07 PDF BibTeX XML Cite \textit{P. A. Nguyen} and \textit{J.-P. Raymond}, SIAM J. Control Optim. 53, No. 5, 3006--3039 (2015; Zbl 1327.93194) Full Text: DOI
Ammari, Habib; Lee, Eunjung; Kwon, Hyeuknam; Seo, Jin Keun; Woo, Eung Je Mathematical modeling of mechanical vibration-assisted conductivity imaging. (English) Zbl 1432.35240 SIAM J. Appl. Math. 75, No. 3, 1031-1046 (2015). MSC: 35R30 35B30 92C55 78A46 PDF BibTeX XML Cite \textit{H. Ammari} et al., SIAM J. Appl. Math. 75, No. 3, 1031--1046 (2015; Zbl 1432.35240) Full Text: DOI
Liu, Hanbing Boundary optimal feedback controller for time-periodic Stokes-Oseen flows. (English) Zbl 1308.49025 NoDEA, Nonlinear Differ. Equ. Appl. 21, No. 5, 709-735 (2014). MSC: 49N35 49J20 49K20 49L20 49N60 76D07 93B52 PDF BibTeX XML Cite \textit{H. Liu}, NoDEA, Nonlinear Differ. Equ. Appl. 21, No. 5, 709--735 (2014; Zbl 1308.49025) Full Text: DOI
Court, Sébastien Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. I: The linearized system. (English) Zbl 1281.93073 Evol. Equ. Control Theory 3, No. 1, 59-82 (2014). MSC: 93D15 93C20 35Q30 76D05 76D07 74F10 93C05 93B52 74A99 35Q74 PDF BibTeX XML Cite \textit{S. Court}, Evol. Equ. Control Theory 3, No. 1, 59--82 (2014; Zbl 1281.93073) Full Text: DOI
Bourgeois, Laurent; Dardé, Jérémi The “exterior approach” to solve the inverse obstacle problem for the Stokes system. (English) Zbl 1284.35009 Inverse Probl. Imaging 8, No. 1, 23-51 (2014). MSC: 35A15 35M30 35R25 35R30 35R35 65M60 PDF BibTeX XML Cite \textit{L. Bourgeois} and \textit{J. Dardé}, Inverse Probl. Imaging 8, No. 1, 23--51 (2014; Zbl 1284.35009) Full Text: DOI
Gueye, Mamadou Insensitizing controls for the Navier-Stokes equations. (English) Zbl 06295443 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, No. 5, 825-844 (2013). MSC: 35Q30 76D05 76D55 93B05 93C20 93B35 PDF BibTeX XML Cite \textit{M. Gueye}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30, No. 5, 825--844 (2013; Zbl 06295443) Full Text: DOI arXiv
Caubet, Fabien; Dambrine, Marc Stability of critical shapes for the drag minimization problem in Stokes flow. (English) Zbl 1278.49048 J. Math. Pures Appl. (9) 100, No. 3, 327-346 (2013). MSC: 49Q10 49K40 35Q93 76D55 PDF BibTeX XML Cite \textit{F. Caubet} and \textit{M. Dambrine}, J. Math. Pures Appl. (9) 100, No. 3, 327--346 (2013; Zbl 1278.49048) Full Text: DOI
Münch, Arnaud; Pedregal, Pablo A least-squares formulation for the approximation of null controls for the Stokes system. (English. Abridged French version) Zbl 1273.93028 C. R., Math., Acad. Sci. Paris 351, No. 13-14, 545-550 (2013). MSC: 93B05 93C20 35Q93 PDF BibTeX XML Cite \textit{A. Münch} and \textit{P. Pedregal}, C. R., Math., Acad. Sci. Paris 351, No. 13--14, 545--550 (2013; Zbl 1273.93028) Full Text: DOI Link
Egloffe, Anne-Claire Lipschitz stability estimate in the inverse Robin problem for the Stokes system. (English. Abridged French version) Zbl 1291.35441 C. R., Math., Acad. Sci. Paris 351, No. 13-14, 527-531 (2013). MSC: 35R30 35Q35 35B35 PDF BibTeX XML Cite \textit{A.-C. Egloffe}, C. R., Math., Acad. Sci. Paris 351, No. 13--14, 527--531 (2013; Zbl 1291.35441) Full Text: DOI
Ignatova, Mihaela; Kukavica, Igor Strong unique continuation for the Navier-Stokes equation with non-analytic forcing. (English) Zbl 1307.35195 J. Dyn. Differ. Equations 25, No. 1, 1-15 (2013). MSC: 35Q30 35B60 PDF BibTeX XML Cite \textit{M. Ignatova} and \textit{I. Kukavica}, J. Dyn. Differ. Equations 25, No. 1, 1--15 (2013; Zbl 1307.35195) Full Text: DOI
Ballerini, Andrea Stable determination of a body immersed in a fluid: the nonlinear stationary case. (English) Zbl 1302.35427 Appl. Anal. 92, No. 3, 460-481 (2013). MSC: 35R30 74F10 35Q30 35Q35 76D07 35Q74 PDF BibTeX XML Cite \textit{A. Ballerini}, Appl. Anal. 92, No. 3, 460--481 (2013; Zbl 1302.35427) Full Text: DOI arXiv
Barbu, V.; Lasiecka, I. The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients. (English) Zbl 1246.35054 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 12, 4384-4397 (2012). MSC: 35B60 35Q30 35P05 PDF BibTeX XML Cite \textit{V. Barbu} and \textit{I. Lasiecka}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 12, 4384--4397 (2012; Zbl 1246.35054) Full Text: DOI
Nguyen, Tu; Wang, Jenn-Nan Quantitative uniqueness estimate for the Maxwell system with Lipschitz anisotropic media. (English) Zbl 1235.35055 Proc. Am. Math. Soc. 140, No. 2, 595-605 (2012). MSC: 35B45 35B60 35Q61 35A02 PDF BibTeX XML Cite \textit{T. Nguyen} and \textit{J.-N. Wang}, Proc. Am. Math. Soc. 140, No. 2, 595--605 (2012; Zbl 1235.35055) Full Text: DOI
Badra, Mehdi; Caubet, Fabien; Dambrine, Marc Detecting an obstacle immersed in a fluid by shape optimization methods. (English) Zbl 1239.35182 Math. Models Methods Appl. Sci. 21, No. 10, 2069-2101 (2011). MSC: 35R30 49Q10 35Q30 76D07 35R25 PDF BibTeX XML Cite \textit{M. Badra} et al., Math. Models Methods Appl. Sci. 21, No. 10, 2069--2101 (2011; Zbl 1239.35182) Full Text: DOI
Bourgeois, Laurent; Dardé, Jérémi About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains. (English) Zbl 1206.35252 Appl. Anal. 89, No. 11, 1745-1768 (2010). MSC: 35R25 35A15 35A27 35N25 65N30 35B35 PDF BibTeX XML Cite \textit{L. Bourgeois} and \textit{J. Dardé}, Appl. Anal. 89, No. 11, 1745--1768 (2010; Zbl 1206.35252) Full Text: DOI
Lin, Ching-Lung; Nakamura, Gen; Wang, Jenn-Nan Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients. (English) Zbl 1202.35325 Duke Math. J. 155, No. 1, 189-204 (2010). MSC: 35Q74 35J56 35B60 35B45 PDF BibTeX XML Cite \textit{C.-L. Lin} et al., Duke Math. J. 155, No. 1, 189--204 (2010; Zbl 1202.35325) Full Text: DOI arXiv
Bourgeois, Laurent About stability and regularization of ill-posed elliptic Cauchy problems: the case of \(C^{1,1}\) domains. (English) Zbl 1194.35497 ESAIM, Math. Model. Numer. Anal. 44, No. 4, 715-735 (2010). MSC: 35R30 35R25 35J05 35N25 35B35 35J20 PDF BibTeX XML Cite \textit{L. Bourgeois}, ESAIM, Math. Model. Numer. Anal. 44, No. 4, 715--735 (2010; Zbl 1194.35497) Full Text: DOI EuDML
Raymond, J.-P.; Vanninathan, M. Null controllability in a fluid-solid structure model. (English) Zbl 1226.93030 J. Differ. Equations 248, No. 7, 1826-1865 (2010). Reviewer: Ömer Kavaklioglu (Washington) MSC: 93B05 93C20 35-02 35Q35 76S05 76D55 PDF BibTeX XML Cite \textit{J. P. Raymond} and \textit{M. Vanninathan}, J. Differ. Equations 248, No. 7, 1826--1865 (2010; Zbl 1226.93030) Full Text: DOI
Imanuvilov, Oleg Yu; Puel, Jean Pierre; Yamamoto, Masahiro Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. (English) Zbl 1184.35087 Chin. Ann. Math., Ser. B 30, No. 4, 333-378 (2009). Reviewer: Gheorghe Aniculăesei (Iaşi) MSC: 35B45 35K20 93B05 93B07 PDF BibTeX XML Cite \textit{O. Y. Imanuvilov} et al., Chin. Ann. Math., Ser. B 30, No. 4, 333--378 (2009; Zbl 1184.35087) Full Text: DOI
Triggiani, Roberto Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation. (English) Zbl 1181.35034 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 10, 4967-4976 (2009). MSC: 35F60 35B45 35B60 PDF BibTeX XML Cite \textit{R. Triggiani}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 10, 4967--4976 (2009; Zbl 1181.35034) Full Text: DOI
Boulakia, Muriel; Osses, Axel Local null controllability of a two-dimensional fluid-structure interaction problem. (English) Zbl 1149.35068 ESAIM, Control Optim. Calc. Var. 14, No. 1, 1-42 (2008). Reviewer: Wiesław Kotarski (Sosnowiec) MSC: 35Q30 76N25 93B05 93C20 PDF BibTeX XML Cite \textit{M. Boulakia} and \textit{A. Osses}, ESAIM, Control Optim. Calc. Var. 14, No. 1, 1--42 (2008; Zbl 1149.35068) Full Text: DOI EuDML
San Martin, Jorge; Takahashi, Takéo; Tucsnak, Marius A control theoretic approach to the swimming of microscopic organisms. (English) Zbl 1135.76058 Q. Appl. Math. 65, No. 3, 405-424 (2007). MSC: 76Z05 76D05 93C20 PDF BibTeX XML Cite \textit{J. San Martin} et al., Q. Appl. Math. 65, No. 3, 405--424 (2007; Zbl 1135.76058) Full Text: DOI
Bourgeois, Laurent A stability estimate for ill-posed elliptic Cauchy problems in a domain with corners. (English) Zbl 1134.35106 C. R., Math., Acad. Sci. Paris 345, No. 7, 385-390 (2007). MSC: 35R25 93B07 35B45 35B60 PDF BibTeX XML Cite \textit{L. Bourgeois}, C. R., Math., Acad. Sci. Paris 345, No. 7, 385--390 (2007; Zbl 1134.35106) Full Text: DOI
Isakov, Victor; Wang, Jenn-Nan; Yamamoto, Masahiro Uniqueness and stability of determining the residual stress by one measurement. (English) Zbl 1155.35109 Commun. Partial Differ. Equations 32, No. 5, 833-848 (2007). Reviewer: Davide Guidetti (Bologna) MSC: 35R30 74B10 35B60 PDF BibTeX XML Cite \textit{V. Isakov} et al., Commun. Partial Differ. Equations 32, No. 5, 833--848 (2007; Zbl 1155.35109) Full Text: DOI
Imanuvilov, Oleg; Takahashi, Takéo Exact controllability of a fluid–rigid body system. (English) Zbl 1124.35056 J. Math. Pures Appl. (9) 87, No. 4, 408-437 (2007). Reviewer: Martin Gugat (Erlangen) MSC: 35Q30 93B05 76D05 74F10 PDF BibTeX XML Cite \textit{O. Imanuvilov} and \textit{T. Takahashi}, J. Math. Pures Appl. (9) 87, No. 4, 408--437 (2007; Zbl 1124.35056) Full Text: DOI
Doubova, Anna; Fernández-Cara, Enrique; González-Burgos, Manuel; Ortega, Jaime Uniqueness and partial identification in a geometric inverse problem for the Boussinesq system. (English) Zbl 1099.35169 C. R., Math., Acad. Sci. Paris 342, No. 9, 665-670 (2006). MSC: 35R30 35Q35 76D05 PDF BibTeX XML Cite \textit{A. Doubova} et al., C. R., Math., Acad. Sci. Paris 342, No. 9, 665--670 (2006; Zbl 1099.35169) Full Text: DOI
Phung, Kim-Dang Remarks on the observability for the Laplace equation. (Remarques sur l’observabilité pour l’équation de Laplace.) (French) Zbl 1076.93009 ESAIM, Control Optim. Calc. Var. 9, 621-635 (2003). Reviewer: Sebastian Anita (Iaşi) MSC: 93B07 35B45 35B60 35J05 PDF BibTeX XML Cite \textit{K.-D. Phung}, ESAIM, Control Optim. Calc. Var. 9, 621--635 (2003; Zbl 1076.93009) Full Text: DOI Numdam EuDML
Weck, Norbert Unique continuation for a generalized Stokes system. (English) Zbl 1017.35086 Commun. Partial Differ. Equations 27, No. 3-4, 425-436 (2002). Reviewer: Il‘ya Sh.Mogilevskiy (Tver) MSC: 35Q30 35B60 76D07 PDF BibTeX XML Cite \textit{N. Weck}, Commun. Partial Differ. Equations 27, No. 3--4, 425--436 (2002; Zbl 1017.35086) Full Text: DOI
Imanuvilov, Oleg Yu.; Puel, Jean-Pierre Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems. (English. Abridged French version) Zbl 0999.35074 C. R., Math., Acad. Sci. Paris 335, No. 1, 33-38 (2002). MSC: 35Q30 35B27 76D05 PDF BibTeX XML Cite \textit{O. Yu. Imanuvilov} and \textit{J.-P. Puel}, C. R., Math., Acad. Sci. Paris 335, No. 1, 33--38 (2002; Zbl 0999.35074) Full Text: DOI
Koch, Herbert; Tataru, Daniel Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. (English) Zbl 1033.35025 Commun. Pure Appl. Math. 54, No. 3, 339-360 (2001). Reviewer: Zeng Yuesheng (Huaihua) MSC: 35J15 35B60 35R05 PDF BibTeX XML Cite \textit{H. Koch} and \textit{D. Tataru}, Commun. Pure Appl. Math. 54, No. 3, 339--360 (2001; Zbl 1033.35025) Full Text: DOI
Imanuvilov, Oleg Yu. Remarks on exact controllability for the Navier-Stokes equations. (English) Zbl 0961.35104 ESAIM, Control Optim. Calc. Var. 6, 39-72 (2001). MSC: 35Q30 93B05 35K60 93C10 93C20 PDF BibTeX XML Cite \textit{O. Yu. Imanuvilov}, ESAIM, Control Optim. Calc. Var. 6, 39--72 (2001; Zbl 0961.35104) Full Text: DOI Link Numdam EuDML
Regbaoui, Rachid Strong unique continuation for Stokes equations. (English) Zbl 0934.35125 Commun. Partial Differ. Equations 24, No. 9-10, 1891-1902 (1999). Reviewer: Hans-Christoph Grunau (Bayreuth) MSC: 35Q30 35B60 35J45 PDF BibTeX XML Cite \textit{R. Regbaoui}, Commun. Partial Differ. Equations 24, No. 9--10, 1891--1902 (1999; Zbl 0934.35125) Full Text: DOI
Fernández-Cara, Enrique; Martín, José D.; Real, José On the approximate controllability of stochastic Stokes systems. (English) Zbl 0953.60047 Stochastic Anal. Appl. 17, No. 4, 563-577 (1999). Reviewer: W.Grecksch (Halle) MSC: 60H15 93C20 PDF BibTeX XML Cite \textit{E. Fernández-Cara} et al., Stochastic Anal. Appl. 17, No. 4, 563--577 (1999; Zbl 0953.60047) Full Text: DOI
Fabre, Caroline Uniqueness results, control and asymptotic analysis for slightly compressible fluids. (English) Zbl 0938.35138 Math. Methods Appl. Sci. 22, No. 8, 633-654 (1999). Reviewer: K.Deckelnick (Brighton) MSC: 35Q35 76N10 35B37 93B05 35B60 PDF BibTeX XML Cite \textit{C. Fabre}, Math. Methods Appl. Sci. 22, No. 8, 633--654 (1999; Zbl 0938.35138) Full Text: DOI
Osses, A.; Puel, J. P. Boundary controllability of a stationary Stokes system with linear convection observed on an interior curve. (English) Zbl 0958.93010 J. Optimization Theory Appl. 99, No. 1, 201-234 (1998). Reviewer: H.O.Fattorini (Los Angeles) MSC: 93B05 93C20 35Q30 PDF BibTeX XML Cite \textit{A. Osses} and \textit{J. P. Puel}, J. Optim. Theory Appl. 99, No. 1, 201--234 (1998; Zbl 0958.93010) Full Text: DOI
Imanuvilov, O. Yu. On exact controllability for the Navier-Stokes equations. (English) Zbl 1052.93502 ESAIM, Control Optim. Calc. Var. 3, 97-131 (1998). MSC: 93B05 93C20 35Q30 76D05 PDF BibTeX XML Cite \textit{O. Yu. Imanuvilov}, ESAIM, Control Optim. Calc. Var. 3, 97--131 (1998; Zbl 1052.93502) Full Text: DOI Link EuDML
Lions, J. L. On the controllability of distributed systems. (English) Zbl 0876.93044 Proc. Natl. Acad. Sci. USA 94, No. 10, 4828-4835 (1997). Reviewer: A.Akutowicz (Berlin) MSC: 93C20 93B05 49J20 93-02 PDF BibTeX XML Cite \textit{J. L. Lions}, Proc. Natl. Acad. Sci. USA 94, No. 10, 4828--4835 (1997; Zbl 0876.93044) Full Text: DOI
Fabre, Caroline Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. (English) Zbl 0872.93039 ESAIM, Control Optim. Calc. Var. 1, 267-302 (1996). Reviewer: T.Nambu (Kobe) MSC: 93C20 93B05 PDF BibTeX XML Cite \textit{C. Fabre}, ESAIM, Control Optim. Calc. Var. 1, 267--302 (1996; Zbl 0872.93039) Full Text: DOI Link EuDML