Gao, Yali; Mei, Liquan Time-splitting Galerkin method for spin-orbit-coupled Bose-Einstein condensates. (English) Zbl 07325136 Comput. Math. Appl. 87, 77-90 (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{L. Mei}, Comput. Math. Appl. 87, 77--90 (2021; Zbl 07325136) Full Text: DOI
Sun, Jing; Nie, Daxin; Deng, Weihua High-order BDF fully discrete scheme for backward fractional Feynman-Kac equation with nonsmooth data. (English) Zbl 07310806 Appl. Numer. Math. 161, 82-100 (2021). MSC: 60J 35J 82B PDF BibTeX XML Cite \textit{J. Sun} et al., Appl. Numer. Math. 161, 82--100 (2021; Zbl 07310806) Full Text: DOI
Sun, Weiwei; Wu, Chengda New analysis of Galerkin-mixed FEMs for incompressible miscible flow in porous media. (English) Zbl 1452.65359 Math. Comput. 90, No. 327, 81-102 (2021). MSC: 65N30 65M22 65N12 65M15 65H10 35K61 76S05 35Q35 PDF BibTeX XML Cite \textit{W. Sun} and \textit{C. Wu}, Math. Comput. 90, No. 327, 81--102 (2021; Zbl 1452.65359) Full Text: DOI
Abdelwahed, Mohamed; Chorfi, Nejmeddine A posteriori analysis of the spectral element discretization of a non linear heat equation. (English) Zbl 1452.65264 Adv. Nonlinear Anal. 10, 477-493 (2021). MSC: 65M70 65M06 65N35 65M15 35K05 35Q79 PDF BibTeX XML Cite \textit{M. Abdelwahed} and \textit{N. Chorfi}, Adv. Nonlinear Anal. 10, 477--493 (2021; Zbl 1452.65264) Full Text: DOI
Zhalnin, Ruslan Viktorovich; Masyagin, Viktor Fedorovich; Peskova, Elizaveta Evgen’evna; Tishkin, Vladimir Fedorovich A priori error estimates of the local discontinuous Galerkin method on staggered grids for solving a parabolic equation for the homogeneous Dirichlet problem. (Russian. English summary) Zbl 07294530 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 116-136 (2020). MSC: 65N30 PDF BibTeX XML Cite \textit{R. V. Zhalnin} et al., Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 1, 116--136 (2020; Zbl 07294530) Full Text: DOI MNR
Liao, Feng; Zhang, Luming; Wang, Tingchun Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations. (English) Zbl 07290720 Numer. Algorithms 85, No. 4, 1335-1363 (2020). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{F. Liao} et al., Numer. Algorithms 85, No. 4, 1335--1363 (2020; Zbl 07290720) Full Text: DOI
Abdullah Al Mahbub, Md.; He, Xiaoming; Nasu, Nasrin Jahan; Qiu, Changxin; Wang, Yifan; Zheng, Haibiao A coupled multiphysics model and a decoupled stabilized finite element method for the closed-loop geothermal system. (English) Zbl 07271903 SIAM J. Sci. Comput. 42, No. 4, B951-B982 (2020). MSC: 76M10 76S05 80A19 86A05 PDF BibTeX XML Cite \textit{Md. Abdullah Al Mahbub} et al., SIAM J. Sci. Comput. 42, No. 4, B951--B982 (2020; Zbl 07271903) Full Text: DOI
Hu, Xindi; Zhu, Shengfeng Isogeometric analysis for time-fractional partial differential equations. (English) Zbl 1450.65123 Numer. Algorithms 85, No. 3, 909-930 (2020). MSC: 65M60 65D07 26A33 74S05 35R11 PDF BibTeX XML Cite \textit{X. Hu} and \textit{S. Zhu}, Numer. Algorithms 85, No. 3, 909--930 (2020; Zbl 1450.65123) Full Text: DOI
Ren, Jincheng; Liao, Hong-lin; Zhang, Zhimin Superconvergence error estimate of a finite element method on nonuniform time meshes for reaction-subdiffusion equations. (English) Zbl 1452.65247 J. Sci. Comput. 84, No. 2, Paper No. 38, 23 p. (2020). MSC: 65M60 65M15 65N15 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{J. Ren} et al., J. Sci. Comput. 84, No. 2, Paper No. 38, 23 p. (2020; Zbl 1452.65247) Full Text: DOI
Zhao, Zhihui; Li, Hong; Liu, Yang Analysis of a continuous Galerkin method with mesh modification for two-dimensional telegraph equation. (English) Zbl 1443.65233 Comput. Math. Appl. 79, No. 3, 588-602 (2020). MSC: 65M60 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Comput. Math. Appl. 79, No. 3, 588--602 (2020; Zbl 1443.65233) Full Text: DOI
Hào, Dinh Nho; Thanh, Phan Xuan; Bin-Mohsin, Bandar; Cong, Nguyen Huu Stable reconstruction of the initial condition in parabolic equations from boundary observations. (English) Zbl 1446.65096 Comput. Math. Appl. 79, No. 12, 3570-3587 (2020). MSC: 65M32 65N20 65J20 65M60 65N30 65M38 65N38 65M06 65K10 49J20 35K10 PDF BibTeX XML Cite \textit{D. N. Hào} et al., Comput. Math. Appl. 79, No. 12, 3570--3587 (2020; Zbl 1446.65096) Full Text: DOI
Wei, Yifan; Shi, Dongyang Superconvergence analysis of a two-grid method for nonlinear hyperbolic equations. (English) Zbl 1447.65065 Comput. Math. Appl. 79, No. 10, 2846-2855 (2020). MSC: 65M55 65M60 65M22 65M12 35L70 PDF BibTeX XML Cite \textit{Y. Wei} and \textit{D. Shi}, Comput. Math. Appl. 79, No. 10, 2846--2855 (2020; Zbl 1447.65065) Full Text: DOI
Khademi, Ali; Vatne, Jon Eivind Estimation of the interpolation error for semiregular prismatic elements. (English) Zbl 1442.65377 Appl. Numer. Math. 156, 174-191 (2020). MSC: 65N30 65N50 65N15 65D05 41A05 PDF BibTeX XML Cite \textit{A. Khademi} and \textit{J. E. Vatne}, Appl. Numer. Math. 156, 174--191 (2020; Zbl 1442.65377) Full Text: DOI
Karaa, Samir Galerkin type methods for semilinear time-fractional diffusion problems. (English) Zbl 1440.65139 J. Sci. Comput. 83, No. 3, Paper No. 46, 22 p. (2020). MSC: 65M60 65M06 65N30 65M12 65M15 26A33 35R11 65N15 PDF BibTeX XML Cite \textit{S. Karaa}, J. Sci. Comput. 83, No. 3, Paper No. 46, 22 p. (2020; Zbl 1440.65139) Full Text: DOI
Cusimano, Nicole; Del Teso, Félix; Gerardo-Giorda, Luca Numerical approximations for fractional elliptic equations via the method of semigroups. (English) Zbl 1452.35237 ESAIM, Math. Model. Numer. Anal. 54, No. 3, 751-774 (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 35R11 35S15 65R20 65N15 65N25 41A55 26A33 35J25 PDF BibTeX XML Cite \textit{N. Cusimano} et al., ESAIM, Math. Model. Numer. Anal. 54, No. 3, 751--774 (2020; Zbl 1452.35237) Full Text: DOI
Cai, Wentao; Wang, Jilu; Wang, Kai Convergence analysis of Crank-Nicolson Galerkin-Galerkin FEMs for miscible displacement in porous media. (English) Zbl 1434.76063 J. Sci. Comput. 83, No. 2, Paper No. 25, 26 p. (2020). MSC: 76M10 76S05 65N30 35Q35 PDF BibTeX XML Cite \textit{W. Cai} et al., J. Sci. Comput. 83, No. 2, Paper No. 25, 26 p. (2020; Zbl 1434.76063) Full Text: DOI
Li, Meng; Shi, Dongyang; Pei, Lifang Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation. (English) Zbl 1435.65127 Appl. Numer. Math. 151, 141-160 (2020). MSC: 65M06 65M60 65N30 65M12 26A33 35R11 PDF BibTeX XML Cite \textit{M. Li} et al., Appl. Numer. Math. 151, 141--160 (2020; Zbl 1435.65127) Full Text: DOI
Xu, Da Analytical and numerical solutions of a class of nonlinear integro-differential equations with \(L^1\) kernels. (English) Zbl 1434.65197 Nonlinear Anal., Real World Appl. 51, Article ID 103002, 28 p. (2020). MSC: 65M60 65M06 65M15 65N30 45K05 35A01 35A02 PDF BibTeX XML Cite \textit{D. Xu}, Nonlinear Anal., Real World Appl. 51, Article ID 103002, 28 p. (2020; Zbl 1434.65197) Full Text: DOI
Li, Meng; Huang, Chengming; Ming, Wanyuan A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. (English) Zbl 1434.65186 Numer. Algorithms 83, No. 1, 99-124 (2020). MSC: 65M60 65M06 35R11 65M12 47H40 35Q41 PDF BibTeX XML Cite \textit{M. Li} et al., Numer. Algorithms 83, No. 1, 99--124 (2020; Zbl 1434.65186) Full Text: DOI
Shi, Xiangyu; Lu, Linzhang A new two-grid nonconforming mixed finite element method for nonlinear Benjamin-Bona-Mahoney equation. (English) Zbl 1433.65223 Appl. Math. Comput. 371, Article ID 124943, 13 p. (2020). MSC: 65M60 35Q53 PDF BibTeX XML Cite \textit{X. Shi} and \textit{L. Lu}, Appl. Math. Comput. 371, Article ID 124943, 13 p. (2020; Zbl 1433.65223) Full Text: DOI
Abdelwahed, Mohamed; Chorfi, Nejmeddine On the convergence analysis of a time dependent elliptic equation with discontinuous coefficients. (English) Zbl 1435.35146 Adv. Nonlinear Anal. 9, 1145-1160 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J25 35K05 65M70 PDF BibTeX XML Cite \textit{M. Abdelwahed} and \textit{N. Chorfi}, Adv. Nonlinear Anal. 9, 1145--1160 (2020; Zbl 1435.35146) Full Text: DOI
Mukam, Jean Daniel; Tambue, Antoine Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. (English) Zbl 07137371 Appl. Numer. Math. 147, 222-253 (2020). MSC: 47D 47F 47 47H PDF BibTeX XML Cite \textit{J. D. Mukam} and \textit{A. Tambue}, Appl. Numer. Math. 147, 222--253 (2020; Zbl 07137371) Full Text: DOI arXiv
Zhu, Pengfei; Zhang, Qinghui; Liu, Tingyun Stable generalized finite element method (SGFEM) for parabolic interface problems. (English) Zbl 07126221 J. Comput. Appl. Math. 367, Article ID 112475, 19 p. (2020). MSC: 65 49 PDF BibTeX XML Cite \textit{P. Zhu} et al., J. Comput. Appl. Math. 367, Article ID 112475, 19 p. (2020; Zbl 07126221) Full Text: DOI
Mukam, Jean Daniel; Tambue, Antoine Optimal strong convergence rates of numerical methods for semilinear parabolic SPDE driven by Gaussian noise and Poisson random measure. (English) Zbl 1442.65310 Comput. Math. Appl. 77, No. 10, 2786-2803 (2019). MSC: 65M75 35R60 60H15 65M60 PDF BibTeX XML Cite \textit{J. D. Mukam} and \textit{A. Tambue}, Comput. Math. Appl. 77, No. 10, 2786--2803 (2019; Zbl 1442.65310) Full Text: DOI
Shaw, Simon An a priori error estimate for a temporally discontinuous Galerkin space-time finite element method for linear elasto- and visco-dynamics. (English) Zbl 1441.74274 Comput. Methods Appl. Mech. Eng. 351, 1-19 (2019). MSC: 74S05 65M60 35Q74 45D05 45K05 65M15 74D05 PDF BibTeX XML Cite \textit{S. Shaw}, Comput. Methods Appl. Mech. Eng. 351, 1--19 (2019; Zbl 1441.74274) Full Text: DOI
Bermejo, R.; del Sastre, P. Galán An implicit-explicit Runge-Kutta-Chebyshev finite element method for the nonlinear Lithium-ion battery equations. (English) Zbl 1428.78029 Appl. Math. Comput. 361, 398-420 (2019). MSC: 78M10 65M60 78A57 92E20 PDF BibTeX XML Cite \textit{R. Bermejo} and \textit{P. G. del Sastre}, Appl. Math. Comput. 361, 398--420 (2019; Zbl 1428.78029) Full Text: DOI
Xu, Da Numerical analysis of Volterra integro-differential equations for viscoelastic rods and membranes. (English) Zbl 1428.74216 Appl. Math. Comput. 355, 1-20 (2019). MSC: 74S05 65R20 65M60 45K05 65M15 74K10 74K15 74D05 PDF BibTeX XML Cite \textit{D. Xu}, Appl. Math. Comput. 355, 1--20 (2019; Zbl 1428.74216) Full Text: DOI
Yang, Jiming; Xing, Xiaoqing A two-grid discontinuous Galerkin method for a kind of nonlinear parabolic problems. (English) Zbl 1429.65232 Appl. Math. Comput. 346, 96-108 (2019). MSC: 65M60 35K20 35K59 65M12 PDF BibTeX XML Cite \textit{J. Yang} and \textit{X. Xing}, Appl. Math. Comput. 346, 96--108 (2019; Zbl 1429.65232) Full Text: DOI
Qin, Hongyu; Zhang, Qifeng; Wan, Shaohua The continuous Galerkin finite element methods for linear neutral delay differential equations. (English) Zbl 1429.65136 Appl. Math. Comput. 346, 76-85 (2019). MSC: 65L03 34K06 34K40 65L60 PDF BibTeX XML Cite \textit{H. Qin} et al., Appl. Math. Comput. 346, 76--85 (2019; Zbl 1429.65136) Full Text: DOI
Tambue, Antoine; Mukam, Jean Daniel Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear SPDEs driven by multiplicative or additive noise. (English) Zbl 1429.65260 Appl. Math. Comput. 346, 23-40 (2019). MSC: 65M75 35R60 60H15 60H35 PDF BibTeX XML Cite \textit{A. Tambue} and \textit{J. D. Mukam}, Appl. Math. Comput. 346, 23--40 (2019; Zbl 1429.65260) Full Text: DOI
Kundu, Sudeep; Pani, Amiya Kumar Global stabilization of BBM-Burgers’ type equations by nonlinear boundary feedback control laws: theory and finite element error analysis. (English) Zbl 1428.35103 J. Sci. Comput. 81, No. 2, 845-880 (2019). MSC: 35G31 65M60 65M15 93D15 93D20 35Q53 35B35 35Q93 PDF BibTeX XML Cite \textit{S. Kundu} and \textit{A. K. Pani}, J. Sci. Comput. 81, No. 2, 845--880 (2019; Zbl 1428.35103) Full Text: DOI arXiv
Wang, Tingchun; Guo, Boling Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation. (English) Zbl 1426.65132 Sci. China, Math. 62, No. 9, 1669-1686 (2019). MSC: 65M06 65M12 65M15 35Q55 PDF BibTeX XML Cite \textit{T. Wang} and \textit{B. Guo}, Sci. China, Math. 62, No. 9, 1669--1686 (2019; Zbl 1426.65132) Full Text: DOI
Teng, Fei; Luo, Zhen Dong; Yang, Jing A reduced-order extrapolated natural boundary element method based on POD for the parabolic equation in the 2D unbounded domain. (English) Zbl 1438.65309 Comput. Appl. Math. 38, No. 3, Paper No. 102, 21 p. (2019). MSC: 65N38 65N30 65N15 65N12 65M22 PDF BibTeX XML Cite \textit{F. Teng} et al., Comput. Appl. Math. 38, No. 3, Paper No. 102, 21 p. (2019; Zbl 1438.65309) Full Text: DOI
Karsenty, Avi; Mandelbaum, Yaakov Computer algebra challenges in nanotechnology: accurate modeling of nanoscale electro-optic devices using finite elements method. (English) Zbl 1448.81528 Math. Comput. Sci. 13, No. 1-2, 117-130 (2019). MSC: 81V80 81P15 82D80 65D17 65M60 PDF BibTeX XML Cite \textit{A. Karsenty} and \textit{Y. Mandelbaum}, Math. Comput. Sci. 13, No. 1--2, 117--130 (2019; Zbl 1448.81528) Full Text: DOI
Gao, Huadong; Ju, Lili; Xie, Wen A stabilized semi-implicit Euler gauge-invariant method for the time-dependent Ginzburg-Landau equations. (English) Zbl 1426.82074 J. Sci. Comput. 80, No. 2, 1083-1115 (2019). Reviewer: Ivan A. Parinov (Rostov-na-Donu) MSC: 82D55 35Q56 82M20 82M10 65M06 65M60 PDF BibTeX XML Cite \textit{H. Gao} et al., J. Sci. Comput. 80, No. 2, 1083--1115 (2019; Zbl 1426.82074) Full Text: DOI
Wu, Chengda; Sun, Weiwei New analysis of Galerkin FEMs for miscible displacement in porous media. (English) Zbl 1448.76105 J. Sci. Comput. 80, No. 2, 903-923 (2019). MSC: 76M10 76S05 65M15 PDF BibTeX XML Cite \textit{C. Wu} and \textit{W. Sun}, J. Sci. Comput. 80, No. 2, 903--923 (2019; Zbl 1448.76105) Full Text: DOI
Li, Dongfang; Wu, Chengda; Zhang, Zhimin Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. (English) Zbl 1418.65179 J. Sci. Comput. 80, No. 1, 403-419 (2019). MSC: 65N30 65N12 35K61 PDF BibTeX XML Cite \textit{D. Li} et al., J. Sci. Comput. 80, No. 1, 403--419 (2019; Zbl 1418.65179) Full Text: DOI
E, Weinan; Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations. (English) Zbl 1418.65149 J. Sci. Comput. 79, No. 3, 1534-1571 (2019). MSC: 65M75 65C05 91G60 PDF BibTeX XML Cite \textit{W. E} et al., J. Sci. Comput. 79, No. 3, 1534--1571 (2019; Zbl 1418.65149) Full Text: DOI arXiv
Sun, Pengtao Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients. (English) Zbl 07069126 J. Comput. Appl. Math. 356, 81-97 (2019). MSC: 74S05 74F10 76D07 65N12 65N15 PDF BibTeX XML Cite \textit{P. Sun}, J. Comput. Appl. Math. 356, 81--97 (2019; Zbl 07069126) Full Text: DOI
Zhao, Zhihui; Li, Hong A continuous Galerkin method for pseudo-hyperbolic equations with variable coefficients. (English) Zbl 1416.65369 J. Math. Anal. Appl. 473, No. 2, 1053-1072 (2019). MSC: 65M60 65M50 65M15 65D32 35L82 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{H. Li}, J. Math. Anal. Appl. 473, No. 2, 1053--1072 (2019; Zbl 1416.65369) Full Text: DOI
Berselli, Luigi C.; Fagioli, Simone; Spirito, Stefano Suitable weak solutions of the Navier-Stokes equations constructed by a space-time numerical discretization. (English. French summary) Zbl 1414.35143 J. Math. Pures Appl. (9) 125, 189-208 (2019). MSC: 35Q30 76M10 76M20 76D05 PDF BibTeX XML Cite \textit{L. C. Berselli} et al., J. Math. Pures Appl. (9) 125, 189--208 (2019; Zbl 1414.35143) Full Text: DOI
Chen, Wenbin; Wang, Xiaoming; Yan, Yue; Zhang, Zhuying A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. (English) Zbl 1435.65142 SIAM J. Numer. Anal. 57, No. 1, 495-525 (2019). Reviewer: Jegdić Ilija (Houston) MSC: 65M12 35K35 35K55 65M60 65M06 PDF BibTeX XML Cite \textit{W. Chen} et al., SIAM J. Numer. Anal. 57, No. 1, 495--525 (2019; Zbl 1435.65142) Full Text: DOI
Afef, K. Shape and topology design of heat conduction using topological sensitivity analysis method. (English) Zbl 1394.35207 Electron. J. Math. Analysis Appl. 7, No. 1, 289-313 (2019). MSC: 35K05 35Q74 49Q10 49Q12 74P10 74P15 PDF BibTeX XML Cite \textit{K. Afef}, Electron. J. Math. Analysis Appl. 7, No. 1, 289--313 (2019; Zbl 1394.35207) Full Text: Link
Hu, Qingyuan; Chouly, Franz; Hu, Ping; Cheng, Gengdong; Bordas, Stéphane P. A. Skew-symmetric Nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact. (English) Zbl 1440.74403 Comput. Methods Appl. Mech. Eng. 341, 188-220 (2018). MSC: 74S05 65N30 65D07 74M15 PDF BibTeX XML Cite \textit{Q. Hu} et al., Comput. Methods Appl. Mech. Eng. 341, 188--220 (2018; Zbl 1440.74403) Full Text: DOI
Arrarás, A.; Portero, L. Decoupling mixed finite elements on hierarchical triangular grids for parabolic problems. (English) Zbl 1426.76215 Appl. Math. Comput. 319, 662-680 (2018). MSC: 76M10 65M60 35K20 65M55 68W10 76S05 PDF BibTeX XML Cite \textit{A. Arrarás} and \textit{L. Portero}, Appl. Math. Comput. 319, 662--680 (2018; Zbl 1426.76215) Full Text: DOI
Liu, Jincun; Li, Hong; Liu, Yang Crank-Nicolson finite element scheme and modified reduced-order scheme for fractional Sobolev equation. (English) Zbl 1412.65149 Numer. Funct. Anal. Optim. 39, No. 15, 1635-1655 (2018). MSC: 65M60 65M06 65M12 65M15 35K99 35R11 PDF BibTeX XML Cite \textit{J. Liu} et al., Numer. Funct. Anal. Optim. 39, No. 15, 1635--1655 (2018; Zbl 1412.65149) Full Text: DOI
Zhalnin, Ruslan Viktorovich; Masyagin, Viktor Fedorovich Galerkin method with discontinuous basis functions on staggered grips a priory estimates for the homogeneous Dirichlet problem. (Russian. English summary) Zbl 1402.65167 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 11, No. 2, 29-43 (2018). MSC: 65N30 PDF BibTeX XML Cite \textit{R. V. Zhalnin} and \textit{V. F. Masyagin}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 11, No. 2, 29--43 (2018; Zbl 1402.65167) Full Text: DOI MNR
Wang, Tingchun; Zhao, Xiaofei Unconditional \(L^{\infty }\)-convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions. (English) Zbl 1404.65103 Calcolo 55, No. 3, Paper No. 34, 26 p. (2018). MSC: 65M06 65M12 35Q55 65M15 PDF BibTeX XML Cite \textit{T. Wang} and \textit{X. Zhao}, Calcolo 55, No. 3, Paper No. 34, 26 p. (2018; Zbl 1404.65103) Full Text: DOI
Csóka, József; Faragó, István; Horváth, Róbert; Karátson, János; Korotov, Sergey Qualitative properties of nonlinear parabolic operators II: the case of PDE systems. (English) Zbl 06937840 J. Math. Anal. Appl. 468, No. 1, 64-86 (2018). MSC: 35 45 PDF BibTeX XML Cite \textit{J. Csóka} et al., J. Math. Anal. Appl. 468, No. 1, 64--86 (2018; Zbl 06937840) Full Text: DOI
Li, Dongfang; Zhang, Jiwei; Zhang, Zhimin Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. (English) Zbl 1397.65173 J. Sci. Comput. 76, No. 2, 848-866 (2018). MSC: 65M30 35R11 35K57 65M06 65M12 35K55 65M15 PDF BibTeX XML Cite \textit{D. Li} et al., J. Sci. Comput. 76, No. 2, 848--866 (2018; Zbl 1397.65173) Full Text: DOI
Qin, Hongyu; Wang, Zhiyong; Zhu, Fumin; Wen, Jinming Stability analysis of additive Runge-Kutta methods for delay-integro-differential equations. (English) Zbl 06915963 Int. J. Differ. Equ. 2018, Article ID 8241784, 5 p. (2018). MSC: 34 35 PDF BibTeX XML Cite \textit{H. Qin} et al., Int. J. Differ. Equ. 2018, Article ID 8241784, 5 p. (2018; Zbl 06915963) Full Text: DOI
Łoś, M.; Schaefer, R.; Paszyński, M. Parallel space-time \(hp\) adaptive discretization scheme for parabolic problems. (English) Zbl 06910456 J. Comput. Appl. Math. 344, 819-835 (2018). MSC: 65 76 PDF BibTeX XML Cite \textit{M. Łoś} et al., J. Comput. Appl. Math. 344, 819--835 (2018; Zbl 06910456) Full Text: DOI
Atouani, Noureddine; Ouali, Yousra; Omrani, Khaled Mixed finite element methods for the Rosenau equation. (English) Zbl 1395.65135 J. Appl. Math. Comput. 57, No. 1-2, 393-420 (2018). MSC: 65N30 65N12 65N15 35Q53 PDF BibTeX XML Cite \textit{N. Atouani} et al., J. Appl. Math. Comput. 57, No. 1--2, 393--420 (2018; Zbl 1395.65135) Full Text: DOI
Karaa, Samir Semidiscrete finite element analysis of time fractional parabolic problems: a unified approach. (English) Zbl 1397.65188 SIAM J. Numer. Anal. 56, No. 3, 1673-1692 (2018). Reviewer: Murli Gupta (Washington, D. C.) MSC: 65M60 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{S. Karaa}, SIAM J. Numer. Anal. 56, No. 3, 1673--1692 (2018; Zbl 1397.65188) Full Text: DOI arXiv
Orlovsky, D. G.; Piskarev, S. I. On approximation of coefficient inverse problems for differential equations in functional spaces. (English. Russian original) Zbl 1434.35280 J. Math. Sci., New York 230, No. 6, 823-906 (2018); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 133 (2017). MSC: 35R30 65J22 PDF BibTeX XML Full Text: DOI
Wang, Jilu Unconditional stability and convergence of Crank-Nicolson Galerkin FEMs for a nonlinear Schrödinger-Helmholtz system. (English) Zbl 1402.65119 Numer. Math. 139, No. 2, 479-503 (2018). Reviewer: Kai Schneider (Marseille) MSC: 65M60 65N30 65N15 65M12 PDF BibTeX XML Cite \textit{J. Wang}, Numer. Math. 139, No. 2, 479--503 (2018; Zbl 1402.65119) Full Text: DOI
Kundu, Sudeep; Pani, Amiya Kumar Finite element approximation to global stabilization of the Burgers’ equation by Neumann boundary feedback control law. (English) Zbl 1448.65165 Adv. Comput. Math. 44, No. 2, 541-570 (2018). MSC: 65M60 65M06 65M15 65M12 35Q93 35Q53 93D15 PDF BibTeX XML Cite \textit{S. Kundu} and \textit{A. K. Pani}, Adv. Comput. Math. 44, No. 2, 541--570 (2018; Zbl 1448.65165) Full Text: DOI
Bao, Weizhu; Su, Chunmei Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime. (English) Zbl 1387.65082 Math. Comput. 87, No. 313, 2133-2158 (2018). MSC: 65M06 35Q55 65M12 65M15 PDF BibTeX XML Cite \textit{W. Bao} and \textit{C. Su}, Math. Comput. 87, No. 313, 2133--2158 (2018; Zbl 1387.65082) Full Text: DOI arXiv
Franz, Sebastian; Matthies, Gunar A unified framework for time-dependent singularly perturbed problems with discontinuous Galerkin methods in time. (English) Zbl 1395.65127 Math. Comput. 87, No. 313, 2113-2132 (2018). Reviewer: Aziz Takhirov (Edmonton) MSC: 65N15 35B25 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{S. Franz} and \textit{G. Matthies}, Math. Comput. 87, No. 313, 2113--2132 (2018; Zbl 1395.65127) Full Text: DOI
Zouraris, Georgios E. Crank-Nicolson finite element approximations for a linear stochastic fourth order equation with additive space-time white noise. (English) Zbl 1448.65179 SIAM J. Numer. Anal. 56, No. 2, 838-858 (2018). MSC: 65M60 65N30 65M06 65M12 65M15 65C30 35K25 60H40 35Q60 PDF BibTeX XML Cite \textit{G. E. Zouraris}, SIAM J. Numer. Anal. 56, No. 2, 838--858 (2018; Zbl 1448.65179) Full Text: DOI arXiv
Paquet, Luc Radiative heating of a glass plate: the semi-discrete problem (second revision). (English) Zbl 1399.65263 Afr. Mat. 29, No. 1-2, 295-330 (2018). MSC: 65M60 35Q79 35K20 35K55 45K05 65M15 65M22 PDF BibTeX XML Cite \textit{L. Paquet}, Afr. Mat. 29, No. 1--2, 295--330 (2018; Zbl 1399.65263) Full Text: DOI
Cai, Yongyong; Yuan, Yongjun Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime. (English) Zbl 1384.35116 Math. Comput. 87, No. 311, 1191-1225 (2018). MSC: 35Q55 65M06 65M12 65M15 76G25 76X05 PDF BibTeX XML Cite \textit{Y. Cai} and \textit{Y. Yuan}, Math. Comput. 87, No. 311, 1191--1225 (2018; Zbl 1384.35116) Full Text: DOI
Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. (English) Zbl 1382.65320 J. Comput. Phys. 358, 256-282 (2018). MSC: 65M60 35Q55 35R11 PDF BibTeX XML Cite \textit{M. Li} et al., J. Comput. Phys. 358, 256--282 (2018; Zbl 1382.65320) Full Text: DOI
Ahmed, Naveed; Linke, Alexander; Merdon, Christian On really locking-free mixed finite element methods for the transient incompressible Stokes equations. (English) Zbl 1422.65218 SIAM J. Numer. Anal. 56, No. 1, 185-209 (2018). MSC: 65M12 65M30 65M15 76D07 76M10 PDF BibTeX XML Cite \textit{N. Ahmed} et al., SIAM J. Numer. Anal. 56, No. 1, 185--209 (2018; Zbl 1422.65218) Full Text: DOI
Wang, Tingchun; Jiang, Jiaping; Xue, Xiang Unconditional and optimal \(H^{1}\) error estimate of a Crank-Nicolson finite difference scheme for the Gross-Pitaevskii equation with an angular momentum rotation term. (English) Zbl 1379.65066 J. Math. Anal. Appl. 459, No. 2, 945-958 (2018). MSC: 65M06 65M15 65M12 35Q76 35Q82 35Q55 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Math. Anal. Appl. 459, No. 2, 945--958 (2018; Zbl 1379.65066) Full Text: DOI
Chai, Shimin; Cao, Yanzhao; Zou, Yongkui; Zhao, Wenju Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation. (English) Zbl 1377.65006 Appl. Numer. Math. 124, 44-56 (2018). MSC: 65C30 60H15 60H35 35R60 PDF BibTeX XML Cite \textit{S. Chai} et al., Appl. Numer. Math. 124, 44--56 (2018; Zbl 1377.65006) Full Text: DOI
Rui, Hongxing; Zhang, Jingyuan A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport. (English) Zbl 1439.76091 Comput. Methods Appl. Mech. Eng. 315, 169-189 (2017). MSC: 76M10 65M60 65M12 65M15 76D07 76S05 PDF BibTeX XML Cite \textit{H. Rui} and \textit{J. Zhang}, Comput. Methods Appl. Mech. Eng. 315, 169--189 (2017; Zbl 1439.76091) Full Text: DOI
Zhang, Yuezhi; Zhang, Jiansong The splitting mixed element method for parabolic equation and its application in chemotaxis model. (English) Zbl 1427.65273 Appl. Math. Comput. 313, 287-300 (2017). MSC: 65M60 65M12 92C17 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{J. Zhang}, Appl. Math. Comput. 313, 287--300 (2017; Zbl 1427.65273) Full Text: DOI
Engblom, Stefan; Hellander, Andreas; Lötstedt, Per Multiscale simulation of stochastic reaction-diffusion networks. (English) Zbl 1401.92091 Holcman, David (ed.), Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology. Cham: Springer (ISBN 978-3-319-62626-0/hbk; 978-3-319-62627-7/ebook). 55-79 (2017). MSC: 92C45 35K57 92C42 PDF BibTeX XML Cite \textit{S. Engblom} et al., in: Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology. Cham: Springer. 55--79 (2017; Zbl 1401.92091) Full Text: DOI
Frittelli, Massimo; Madzvamuse, Anotida; Sgura, Ivonne; Venkataraman, Chandrasekhar Lumped finite elements for reaction-cross-diffusion systems on stationary surfaces. (English) Zbl 1397.65185 Comput. Math. Appl. 74, No. 12, 3008-3023 (2017). MSC: 65M60 35K51 35K57 35K58 65M06 65M15 65M12 PDF BibTeX XML Cite \textit{M. Frittelli} et al., Comput. Math. Appl. 74, No. 12, 3008--3023 (2017; Zbl 1397.65185) Full Text: DOI
Zhang, Jiansong; Yang, Danping Parallel splitting positive definite mixed element method for parabolic problem. (English) Zbl 1404.65187 Int. J. Comput. Methods 14, No. 6, Article ID 1750061, 20 p. (2017). MSC: 65M60 65M15 65M55 65Y05 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{D. Yang}, Int. J. Comput. Methods 14, No. 6, Article ID 1750061, 20 p. (2017; Zbl 1404.65187) Full Text: DOI
Lehrenfeld, Christoph; Reusken, Arnold High order unfitted finite element methods for interface problems and PDEs on surfaces. (English) Zbl 1444.35130 Bothe, Dieter (ed.) et al., Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer. Adv. Math. Fluid Mech., 33-63 (2017). MSC: 35Q35 76M10 76T10 PDF BibTeX XML Cite \textit{C. Lehrenfeld} and \textit{A. Reusken}, in: Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer. 33--63 (2017; Zbl 1444.35130) Full Text: DOI
Li, Dongfang; Wang, Jilu; Zhang, Jiwei Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. (English) Zbl 1379.65079 SIAM J. Sci. Comput. 39, No. 6, A3067-A3088 (2017). MSC: 65M60 35Q55 35R11 65M15 65M12 PDF BibTeX XML Cite \textit{D. Li} et al., SIAM J. Sci. Comput. 39, No. 6, A3067--A3088 (2017; Zbl 1379.65079) Full Text: DOI
Li, Dongfang; Wang, Jilu Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. (English) Zbl 1377.65118 J. Sci. Comput. 72, No. 2, 892-915 (2017). Reviewer: Marius Ghergu (Dublin) MSC: 65M15 65M60 35K55 65M06 PDF BibTeX XML Cite \textit{D. Li} and \textit{J. Wang}, J. Sci. Comput. 72, No. 2, 892--915 (2017; Zbl 1377.65118) Full Text: DOI
Le, Kim Ngan; McLean, William; Lamichhhane, Bishnu Finite element approximation of a time-fractional diffusion problem for a domain with a re-entrant corner. (English) Zbl 1404.65273 ANZIAM J. 59, No. 1, 61-82 (2017). MSC: 65N30 35R11 33E12 35D40 65N50 44A10 65N12 35K05 60J65 65D32 PDF BibTeX XML Cite \textit{K. N. Le} et al., ANZIAM J. 59, No. 1, 61--82 (2017; Zbl 1404.65273) Full Text: DOI
Polner, Mónika; van der Vegt, J. J. W.; van Gils, S. A. A space-time finite element method for neural field equations with transmission delays. (English) Zbl 1373.65072 SIAM J. Sci. Comput. 39, No. 5, B797-B818 (2017). MSC: 65M60 92C20 35Q92 65M15 PDF BibTeX XML Cite \textit{M. Polner} et al., SIAM J. Sci. Comput. 39, No. 5, B797--B818 (2017; Zbl 1373.65072) Full Text: DOI
Zhao, Zhihui; Li, Hong; Luo, Zhendong Analysis of a space-time continuous Galerkin method for convection-dominated Sobolev equations. (English) Zbl 1372.65277 Comput. Math. Appl. 73, No. 8, 1643-1656 (2017). MSC: 65M60 65M12 35G16 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Comput. Math. Appl. 73, No. 8, 1643--1656 (2017; Zbl 1372.65277) Full Text: DOI
Hong, Jialin; Ji, Lihai; Kong, Linghua; Wang, Tingchun Optimal error estimate of a compact scheme for nonlinear Schrödinger equation. (English) Zbl 1370.65072 Appl. Numer. Math. 120, 68-81 (2017). MSC: 65P10 35Q55 37K10 37M15 65M15 65M12 PDF BibTeX XML Cite \textit{J. Hong} et al., Appl. Numer. Math. 120, 68--81 (2017; Zbl 1370.65072) Full Text: DOI
Yang, Danping Non-iterative parallel Schwarz algorithms based on overlapping domain decomposition for parabolic partial differential equations. (English) Zbl 1368.65183 Math. Comput. 86, No. 308, 2687-2718 (2017). MSC: 65M55 35K20 65Y05 PDF BibTeX XML Cite \textit{D. Yang}, Math. Comput. 86, No. 308, 2687--2718 (2017; Zbl 1368.65183) Full Text: DOI
Li, Meng; Huang, Chengming; Wang, Nan Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation. (English) Zbl 1367.65144 Appl. Numer. Math. 118, 131-149 (2017). MSC: 65M60 35Q56 35R11 65M12 65M06 65M15 PDF BibTeX XML Cite \textit{M. Li} et al., Appl. Numer. Math. 118, 131--149 (2017; Zbl 1367.65144) Full Text: DOI
Gao, Huadong; Li, Buyang; Sun, Weiwei Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon. (English) Zbl 1368.65159 Numer. Math. 136, No. 2, 383-409 (2017). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65M12 65M50 65M60 35K61 65M15 PDF BibTeX XML Cite \textit{H. Gao} et al., Numer. Math. 136, No. 2, 383--409 (2017; Zbl 1368.65159) Full Text: DOI
Mizuguchi, Makoto; Takayasu, Akitoshi; Kubo, Takayuki; Oishi, Shin’ichi A method of verified computations for solutions to semilinear parabolic equations using semigroup theory. (English) Zbl 1362.65106 SIAM J. Numer. Anal. 55, No. 2, 980-1001 (2017). MSC: 65M60 65M15 35K20 PDF BibTeX XML Cite \textit{M. Mizuguchi} et al., SIAM J. Numer. Anal. 55, No. 2, 980--1001 (2017; Zbl 1362.65106) Full Text: DOI
Li, Xiaocui; Yang, Xiaoyuan; Zhang, Yinghan Error estimates of mixed finite element methods for time-fractional Navier-Stokes equations. (English) Zbl 1383.65107 J. Sci. Comput. 70, No. 2, 500-515 (2017). Reviewer: Abdallah Bradji (Annaba) MSC: 65M15 65M60 35Q30 35R11 65M12 76D05 65M06 PDF BibTeX XML Cite \textit{X. Li} et al., J. Sci. Comput. 70, No. 2, 500--515 (2017; Zbl 1383.65107) Full Text: DOI
Faragó, István; Horváth, Róbert; Karátson, János; Korotov, Sergey Qualitative properties of nonlinear parabolic operators. (English) Zbl 1354.65207 J. Math. Anal. Appl. 448, No. 1, 473-497 (2017). MSC: 65M99 35K55 35B50 PDF BibTeX XML Cite \textit{I. Faragó} et al., J. Math. Anal. Appl. 448, No. 1, 473--497 (2017; Zbl 1354.65207) Full Text: DOI
Wang, Shiah-Sen; Yeh, Li-Ming A Hölder estimate for non-uniform elliptic equations in a random medium. (English) Zbl 1388.35236 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 148, 61-87 (2017). MSC: 35R60 35J15 35J25 35J70 35R05 PDF BibTeX XML Cite \textit{S.-S. Wang} and \textit{L.-M. Yeh}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 148, 61--87 (2017; Zbl 1388.35236) Full Text: DOI
Zhou, Zhaojie; Gong, Wei Finite element approximation of optimal control problems governed by time fractional diffusion equation. (English) Zbl 1443.65235 Comput. Math. Appl. 71, No. 1, 301-318 (2016). MSC: 65M60 65M15 35R11 49J20 49K20 49M25 PDF BibTeX XML Cite \textit{Z. Zhou} and \textit{W. Gong}, Comput. Math. Appl. 71, No. 1, 301--318 (2016; Zbl 1443.65235) Full Text: DOI
Casas, Eduardo; Chrysafinos, Konstantinos A review of numerical analysis for the discretization of the velocity tracking problem. (English) Zbl 06981849 Ortegón Gallego, Francisco (ed.) et al., Trends in differential equations and applications. Selected papers based on the presentations at the XXIVth congress on differential equations and applications/XIVth congress on applied mathematics, Cádiz, Spain, June 8–12, 2015. Cham: Springer (ISBN 978-3-319-32012-0/hbk; 978-3-319-32013-7/ebook). SEMA SIMAI Springer Series 8, 51-71 (2016). MSC: 65 PDF BibTeX XML Cite \textit{E. Casas} and \textit{K. Chrysafinos}, SEMA SIMAI Springer Ser. 8, 51--71 (2016; Zbl 06981849) Full Text: DOI
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E. High-order solution methods for grey discrete ordinates thermal radiative transfer. (English) Zbl 1422.65262 J. Comput. Phys. 327, 719-746 (2016). MSC: 65M60 35Q79 65M12 PDF BibTeX XML Cite \textit{P. G. Maginot} et al., J. Comput. Phys. 327, 719--746 (2016; Zbl 1422.65262) Full Text: DOI
Abdulle, Assyr Numerical homogenization methods for parabolic monotone problems. (English) Zbl 1357.65168 Barrenechea, Gabriel R. (ed.) et al., Building bridges: connections and challenges in modern approaches to numerical partial differential equations. Selected papers based on the presentations at the 101st LMS-EPSRC symposium, Durham, UK, July 8–16, 2014. Cham: Springer (ISBN 978-3-319-41638-0/hbk; 978-3-319-41640-3/ebook). Lecture Notes in Computational Science and Engineering 114, 1-38 (2016). MSC: 65M60 65M20 35K55 65L06 35B27 65M12 PDF BibTeX XML Cite \textit{A. Abdulle}, Lect. Notes Comput. Sci. Eng. 114, 1--38 (2016; Zbl 1357.65168) Full Text: DOI
Cai, Wentao; Li, Jian; Chen, Zhangxin Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation. (English) Zbl 1355.65115 Adv. Comput. Math. 42, No. 6, 1311-1330 (2016). Reviewer: H. P. Dikshit (Bhopal) MSC: 65M12 65M15 65M60 35Q55 PDF BibTeX XML Cite \textit{W. Cai} et al., Adv. Comput. Math. 42, No. 6, 1311--1330 (2016; Zbl 1355.65115) Full Text: DOI
Henning, Patrick; Ohlberger, Mario A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift. (English) Zbl 1357.65147 Discrete Contin. Dyn. Syst., Ser. S 9, No. 5, 1393-1420 (2016). MSC: 65M15 65M60 35K15 35B27 65M50 PDF BibTeX XML Cite \textit{P. Henning} and \textit{M. Ohlberger}, Discrete Contin. Dyn. Syst., Ser. S 9, No. 5, 1393--1420 (2016; Zbl 1357.65147) Full Text: DOI
Liu, Jincun; Li, Hong; Liu, Yang A new fully discrete finite difference/element approximation for fractional cable equation. (English) Zbl 1359.65155 J. Appl. Math. Comput. 52, No. 1-2, 345-361 (2016). Reviewer: Petr Sváček (Praha) MSC: 65M06 65M60 35R11 35L20 65M12 65M15 PDF BibTeX XML Cite \textit{J. Liu} et al., J. Appl. Math. Comput. 52, No. 1--2, 345--361 (2016; Zbl 1359.65155) Full Text: DOI
Liu, Jincun; Li, Hong; Liu, Yang; Fang, Zhichao Reduced-order finite element method based on POD for fractional Tricomi-type equation. (English) Zbl 1342.65194 AMM, Appl. Math. Mech., Engl. Ed. 37, No. 5, 647-658 (2016). MSC: 65M60 65M12 35R11 PDF BibTeX XML Cite \textit{J. Liu} et al., AMM, Appl. Math. Mech., Engl. Ed. 37, No. 5, 647--658 (2016; Zbl 1342.65194) Full Text: DOI
Sharma, Nisha; Khebchareon, Morrakot; Sharma, Kapil; Pani, Amiya K. Finite element Galerkin approximations to a class of nonlinear and nonlocal parabolic problems. (English) Zbl 1342.65197 Numer. Methods Partial Differ. Equations 32, No. 4, 1232-1264 (2016). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65M60 PDF BibTeX XML Cite \textit{N. Sharma} et al., Numer. Methods Partial Differ. Equations 32, No. 4, 1232--1264 (2016; Zbl 1342.65197) Full Text: DOI
Lu, Zuliang New a posteriori \(L^\infty(L^2)\) and \(L^2(L^2)\)-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems. (English) Zbl 1389.49018 Appl. Math., Praha 61, No. 2, 135-163 (2016). Reviewer: Bülent Karasözen (Ankara) MSC: 49K20 65N30 49M30 49M25 35K55 PDF BibTeX XML Cite \textit{Z. Lu}, Appl. Math., Praha 61, No. 2, 135--163 (2016; Zbl 1389.49018) Full Text: DOI Link
Hoang, Thao-Phuong; Japhet, Caroline; Kern, Michel; Roberts, Jean E. Space-time domain decomposition for reduced fracture models in mixed formulation. (English) Zbl 1382.76164 SIAM J. Numer. Anal. 54, No. 1, 288-316 (2016). MSC: 76M10 65M60 35K20 65M50 65M55 74R10 76S05 PDF BibTeX XML Cite \textit{T.-P. Hoang} et al., SIAM J. Numer. Anal. 54, No. 1, 288--316 (2016; Zbl 1382.76164) Full Text: DOI
Meinecke, Lina; Engblom, Stefan; Hellander, Andreas; Lötstedt, Per Analysis and design of jump coefficients in discrete stochastic diffusion models. (English) Zbl 1330.65017 SIAM J. Sci. Comput. 38, No. 1, A55-A83 (2016). MSC: 65C30 60H15 60H35 65C40 60J60 65M60 65M15 35R60 PDF BibTeX XML Cite \textit{L. Meinecke} et al., SIAM J. Sci. Comput. 38, No. 1, A55--A83 (2016; Zbl 1330.65017) Full Text: DOI arXiv
Cao, Waixiang; Zhang, Zhimin Superconvergence of local discontinuous Galerkin methods for one-dimensional linear parabolic equations. (English) Zbl 1327.65191 Math. Comput. 85, No. 297, 63-84 (2016). MSC: 65M60 65M12 65M15 35K20 PDF BibTeX XML Cite \textit{W. Cao} and \textit{Z. Zhang}, Math. Comput. 85, No. 297, 63--84 (2016; Zbl 1327.65191) Full Text: DOI arXiv
Jiang, Fengze; Huang, Chengming; Wang, Xiaojie Stochastic exponential integrator for finite element spatial discretization of stochastic elastic equation. (English) Zbl 1443.65344 Comput. Math. Appl. 69, No. 8, 817-827 (2015). MSC: 65N30 65N75 35R60 PDF BibTeX XML Cite \textit{F. Jiang} et al., Comput. Math. Appl. 69, No. 8, 817--827 (2015; Zbl 1443.65344) Full Text: DOI
Sharma, Nisha; Sharma, Kapil K. Finite element method for a nonlinear parabolic integro-differential equation in higher spatial dimensions. (English) Zbl 1443.65445 Appl. Math. Modelling 39, No. 23-24, 7338-7350 (2015). MSC: 65R20 45K05 PDF BibTeX XML Cite \textit{N. Sharma} and \textit{K. K. Sharma}, Appl. Math. Modelling 39, No. 23--24, 7338--7350 (2015; Zbl 1443.65445) Full Text: DOI