Balan, R.; Dutkay, D.; Han, D.; Larson, D.; Luef, F. A duality principle for groups. II: Multi-frames meet super-frames. (English) Zbl 1455.42025 J. Fourier Anal. Appl. 26, No. 6, Paper No. 83, 18 p. (2020). MSC: 42C15 46C05 47B10 PDF BibTeX XML Cite \textit{R. Balan} et al., J. Fourier Anal. Appl. 26, No. 6, Paper No. 83, 18 p. (2020; Zbl 1455.42025) Full Text: DOI
Austad, Are; Jakobsen, Mads S.; Luef, Franz Gabor duality theory for Morita equivalent \(C^\ast\)-algebras. (English) Zbl 1453.42025 Int. J. Math. 31, No. 10, Article ID 2050073, 34 p. (2020). Reviewer: Ashok Kumar Sah (New Delhi) MSC: 42C15 46L08 43A70 PDF BibTeX XML Cite \textit{A. Austad} et al., Int. J. Math. 31, No. 10, Article ID 2050073, 34 p. (2020; Zbl 1453.42025) Full Text: DOI
Li, Yun-Zhang; Dong, Jian On a class of weak R-duals and the duality relations. (English) Zbl 1445.42022 Banach J. Math. Anal. 14, No. 2, 450-469 (2020). Reviewer: Virender Dalal (Delhi) MSC: 42C15 47A80 41A58 PDF BibTeX XML Cite \textit{Y.-Z. Li} and \textit{J. Dong}, Banach J. Math. Anal. 14, No. 2, 450--469 (2020; Zbl 1445.42022) Full Text: DOI
Gröchenig, Karlheinz; Koppensteiner, Sarah Gabor frames: characterizations and coarse structure. (English) Zbl 1442.81030 Aldroubi, Akram (ed.) et al., New trends in applied harmonic analysis. Volume 2. Harmonic analysis, geometric measure theory, and applications. Collected papers based on courses given at the 2017 CIMPA school, Buenos Aires, Argentina, July 31 – August 11, 2017. Cham: Birkhäuser. Appl. Numer. Harmon. Anal., 93-120 (2019). MSC: 81Q35 81S05 81P55 42C15 PDF BibTeX XML Cite \textit{K. Gröchenig} and \textit{S. Koppensteiner}, in: New trends in applied harmonic analysis. Volume 2. Harmonic analysis, geometric measure theory, and applications. Collected papers based on courses given at the 2017 CIMPA school, Buenos Aires, Argentina, July 31 -- August 11, 2017. Cham: Birkhäuser. 93--120 (2019; Zbl 1442.81030) Full Text: DOI
Ji, Hui; Shen, Zuowei; Zhao, Yufei Digital Gabor filters do generate MRA-based wavelet tight frames. (English) Zbl 1416.42036 Appl. Comput. Harmon. Anal. 47, No. 1, 87-108 (2019). MSC: 42C15 94A12 42C40 PDF BibTeX XML Cite \textit{H. Ji} et al., Appl. Comput. Harmon. Anal. 47, No. 1, 87--108 (2019; Zbl 1416.42036) Full Text: DOI
Perraudin, Nathanaël; Holighaus, Nicki; Søndergaard, Peter L.; Balazs, Peter Designing Gabor windows using convex optimization. (English) Zbl 1427.42037 Appl. Math. Comput. 330, 266-287 (2018). MSC: 42C15 90C25 94A12 PDF BibTeX XML Cite \textit{N. Perraudin} et al., Appl. Math. Comput. 330, 266--287 (2018; Zbl 1427.42037) Full Text: DOI arXiv
Ji, Hui; Shen, Zuowei; Zhao, Yufei Digital Gabor filters with MRA structure. (English) Zbl 1391.94257 Multiscale Model. Simul. 16, No. 1, 452-476 (2018). MSC: 94A12 42A16 42C40 65T60 PDF BibTeX XML Cite \textit{H. Ji} et al., Multiscale Model. Simul. 16, No. 1, 452--476 (2018; Zbl 1391.94257) Full Text: DOI
Zhou, Jian; Fang, Xianyong; Tao, Liang A sparse analysis window for discrete Gabor transform. (English) Zbl 1371.94552 Circuits Syst. Signal Process. 36, No. 10, 4161-4180 (2017). MSC: 94A12 65T50 PDF BibTeX XML Cite \textit{J. Zhou} et al., Circuits Syst. Signal Process. 36, No. 10, 4161--4180 (2017; Zbl 1371.94552) Full Text: DOI
Minin, L. A.; Novikov, Igor Ya.; Ushakov, S. N. On expansion with respect to Gabor frames generated by the Gaussian function. (English. Russian original) Zbl 1368.42035 Math. Notes 100, No. 6, 890-892 (2016); translation from Mat. Zametki 100, No. 6, 951-953 (2016). Reviewer: Somantika Datta (Moscow, ID) MSC: 42C15 PDF BibTeX XML Cite \textit{L. A. Minin} et al., Math. Notes 100, No. 6, 890--892 (2016; Zbl 1368.42035); translation from Mat. Zametki 100, No. 6, 951--953 (2016) Full Text: DOI
Cabrelli, Carlos; Molter, Ursula; Pfander, Götz E. Time-frequency shift invariance and the amalgam Balian-Low theorem. (English) Zbl 1360.46021 Appl. Comput. Harmon. Anal. 41, No. 3, 677-691 (2016). MSC: 46E30 46B15 42C15 PDF BibTeX XML Cite \textit{C. Cabrelli} et al., Appl. Comput. Harmon. Anal. 41, No. 3, 677--691 (2016; Zbl 1360.46021) Full Text: DOI
Stoeva, Diana T.; Christensen, Ole On various R-duals and the duality principle. (English) Zbl 1338.42047 Integral Equations Oper. Theory 84, No. 4, 577-590 (2016). MSC: 42C15 PDF BibTeX XML Cite \textit{D. T. Stoeva} and \textit{O. Christensen}, Integral Equations Oper. Theory 84, No. 4, 577--590 (2016; Zbl 1338.42047) Full Text: DOI
Fan, Zhitao; Heinecke, Andreas; Shen, Zuowei Duality for frames. (English) Zbl 1332.42024 J. Fourier Anal. Appl. 22, No. 1, 71-136 (2016). MSC: 42C15 42C40 42C30 65T60 PDF BibTeX XML Cite \textit{Z. Fan} et al., J. Fourier Anal. Appl. 22, No. 1, 71--136 (2016; Zbl 1332.42024) Full Text: DOI
Jakobsen, Mads Sielemann; Lemvig, Jakob Co-compact Gabor systems on locally compact abelian groups. (English) Zbl 1440.42154 J. Fourier Anal. Appl. 22, No. 1, 36-70 (2016). MSC: 42C15 43A32 43A70 PDF BibTeX XML Cite \textit{M. S. Jakobsen} and \textit{J. Lemvig}, J. Fourier Anal. Appl. 22, No. 1, 36--70 (2016; Zbl 1440.42154) Full Text: DOI arXiv
Jakobsen, Mads Sielemann; Lemvig, Jakob Density and duality theorems for regular Gabor frames. (English) Zbl 1326.42039 J. Funct. Anal. 270, No. 1, 229-263 (2016). MSC: 42C15 42C40 43A25 43A32 43A70 PDF BibTeX XML Cite \textit{M. S. Jakobsen} and \textit{J. Lemvig}, J. Funct. Anal. 270, No. 1, 229--263 (2016; Zbl 1326.42039) Full Text: DOI arXiv
Fan, Zhitao; Ji, Hui; Shen, Zuowei Dual Gramian analysis: duality principle and unitary extension principle. (English) Zbl 1326.42037 Math. Comput. 85, No. 297, 239-270 (2016). MSC: 42C15 42C40 42C30 65T60 PDF BibTeX XML Cite \textit{Z. Fan} et al., Math. Comput. 85, No. 297, 239--270 (2016; Zbl 1326.42037) Full Text: DOI
Christensen, Ole; Feichtinger, Hans G.; Paukner, Stephan Gabor analysis for imaging. (English) Zbl 1331.94014 Scherzer, Otmar (ed.), Handbook of mathematical methods in imaging. In 3 volumes. New York, NY: Springer (ISBN 978-1-4939-0789-2/print; 978-1-4939-0790-8/ebook; 978-1-4939-0791-5/print+ebook; 978-3-642-27795-5/online (updated continuously)). Springer Reference, 1717-1757 (2015). MSC: 94A08 42C15 65D07 PDF BibTeX XML Cite \textit{O. Christensen} et al., in: Handbook of mathematical methods in imaging. In 3 volumes. New York, NY: Springer. 1717--1757 (2015; Zbl 1331.94014) Full Text: DOI
Dabrowski, Ludwik; Landi, Giovanni; Luef, Franz Sigma-model solitons on noncommutative spaces. (English) Zbl 1336.46060 Lett. Math. Phys. 105, No. 12, 1663-1688 (2015). Reviewer: Igor V. Nikolaev (Sherbrooke) MSC: 46L85 58B34 PDF BibTeX XML Cite \textit{L. Dabrowski} et al., Lett. Math. Phys. 105, No. 12, 1663--1688 (2015; Zbl 1336.46060) Full Text: DOI arXiv
Stoeva, Diana T.; Christensen, Ole On R-duals and the duality principle in Gabor analysis. (English) Zbl 1312.42037 J. Fourier Anal. Appl. 21, No. 2, 383-400 (2015). MSC: 42C15 PDF BibTeX XML Cite \textit{D. T. Stoeva} and \textit{O. Christensen}, J. Fourier Anal. Appl. 21, No. 2, 383--400 (2015; Zbl 1312.42037) Full Text: DOI arXiv
Gröchenig, Karlheinz The mystery of Gabor frames. (English) Zbl 1309.42045 J. Fourier Anal. Appl. 20, No. 4, 865-895 (2014). Reviewer: Ghanshyam Bhatt (Nashville) MSC: 42C15 PDF BibTeX XML Cite \textit{K. Gröchenig}, J. Fourier Anal. Appl. 20, No. 4, 865--895 (2014; Zbl 1309.42045) Full Text: DOI
Li, Shidong; Liu, Yulong; Mi, Tiebin Sparse dual frames and dual Gabor functions of minimal time and frequency supports. (English) Zbl 1304.42075 J. Fourier Anal. Appl. 19, No. 1, 48-76 (2013). MSC: 42C15 PDF BibTeX XML Cite \textit{S. Li} et al., J. Fourier Anal. Appl. 19, No. 1, 48--76 (2013; Zbl 1304.42075) Full Text: DOI
Arefijamaal, Ali Akbar; Zekaee, Esmaeel Signal processing by alternate dual Gabor frames. (English) Zbl 1293.42030 Appl. Comput. Harmon. Anal. 35, No. 3, 535-540 (2013). Reviewer: Arash Ghaani Farashahi (Wien) MSC: 42C15 65D07 94A12 PDF BibTeX XML Cite \textit{A. A. Arefijamaal} and \textit{E. Zekaee}, Appl. Comput. Harmon. Anal. 35, No. 3, 535--540 (2013; Zbl 1293.42030) Full Text: DOI
Gabardo, Jean-Pierre; Han, Deguang; Li, Yun-Zhang Lattice tiling and density conditions for subspace Gabor frames. (English) Zbl 1283.42044 J. Funct. Anal. 265, No. 7, 1170-1189 (2013). MSC: 42C15 PDF BibTeX XML Cite \textit{J.-P. Gabardo} et al., J. Funct. Anal. 265, No. 7, 1170--1189 (2013; Zbl 1283.42044) Full Text: DOI
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young On the duality principle by Casazza, Kutyniok, and Lammers. (English) Zbl 1222.42031 J. Fourier Anal. Appl. 17, No. 4, 640-655 (2011). Reviewer: Manfred Tasche (Rostock) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{O. Christensen} et al., J. Fourier Anal. Appl. 17, No. 4, 640--655 (2011; Zbl 1222.42031) Full Text: DOI
Gröchenig, Karlheinz Multivariate Gabor frames and sampling of entire functions of several variables. (English) Zbl 1225.42022 Appl. Comput. Harmon. Anal. 31, No. 2, 218-227 (2011). Reviewer: Paşc Găvruţă (Timişoara) MSC: 42C15 30E05 46E20 PDF BibTeX XML Cite \textit{K. Gröchenig}, Appl. Comput. Harmon. Anal. 31, No. 2, 218--227 (2011; Zbl 1225.42022) Full Text: DOI
Luef, Franz Projections in noncommutative tori and Gabor frames. (English) Zbl 1213.42121 Proc. Am. Math. Soc. 139, No. 2, 571-582 (2011). Reviewer: Takeshi Kawazoe (Yokohama) MSC: 42C15 46L08 22D15 43A20 PDF BibTeX XML Cite \textit{F. Luef}, Proc. Am. Math. Soc. 139, No. 2, 571--582 (2011; Zbl 1213.42121) Full Text: DOI arXiv
Lammers, Mark; Maeser, Anna An uncertainty principle for finite frames. (English) Zbl 1203.42040 J. Math. Anal. Appl. 373, No. 1, 242-247 (2011). Reviewer: Magali Anastasio (Buenos Aires) MSC: 42C15 PDF BibTeX XML Cite \textit{M. Lammers} and \textit{A. Maeser}, J. Math. Anal. Appl. 373, No. 1, 242--247 (2011; Zbl 1203.42040) Full Text: DOI
Blum, James; Lammers, Mark; Powell, Alexander M.; Yılmaz, Özgür Sobolev duals in frame theory and Sigma-Delta quantization. (English) Zbl 1200.42019 J. Fourier Anal. Appl. 16, No. 3, 365-381 (2010). Reviewer: Joseph Lakey (Las Cruces) MSC: 42C15 41A30 94A34 PDF BibTeX XML Cite \textit{J. Blum} et al., J. Fourier Anal. Appl. 16, No. 3, 365--381 (2010; Zbl 1200.42019) Full Text: DOI
Lian, Qiao-Fang; Li, Yun-Zhang The duals of Gabor frames on discrete periodic sets. (English) Zbl 1200.94024 J. Math. Phys. 50, No. 1, 013534, 22 p. (2009). MSC: 94A12 42C15 PDF BibTeX XML Cite \textit{Q.-F. Lian} and \textit{Y.-Z. Li}, J. Math. Phys. 50, No. 1, 013534, 22 p. (2009; Zbl 1200.94024) Full Text: DOI
Luef, Franz; Manin, Yuri I. Quantum theta functions and Gabor frames for modulation spaces. (English) Zbl 1175.42017 Lett. Math. Phys. 88, No. 1-3, 131-161 (2009). MSC: 42C15 46L89 22E99 81R60 81S05 94A14 11F27 14K25 PDF BibTeX XML Cite \textit{F. Luef} and \textit{Y. I. Manin}, Lett. Math. Phys. 88, No. 1--3, 131--161 (2009; Zbl 1175.42017) Full Text: DOI arXiv
Dutkay, Dorin; Han, Deguang; Larson, David A duality principle for groups. (English) Zbl 1169.42011 J. Funct. Anal. 257, No. 4, 1133-1143 (2009). MSC: 42C15 PDF BibTeX XML Cite \textit{D. Dutkay} et al., J. Funct. Anal. 257, No. 4, 1133--1143 (2009; Zbl 1169.42011) Full Text: DOI arXiv
Han, Deguang Dilations and completions for Gabor systems. (English) Zbl 1163.42012 J. Fourier Anal. Appl. 15, No. 2, 201-217 (2009). MSC: 42C15 46C05 47B10 PDF BibTeX XML Cite \textit{D. Han}, J. Fourier Anal. Appl. 15, No. 2, 201--217 (2009; Zbl 1163.42012) Full Text: DOI
Feichtinger, Hans G.; Kozek, Werner; Luef, Franz Gabor analysis over finite Abelian groups. (English) Zbl 1162.43002 Appl. Comput. Harmon. Anal. 26, No. 2, 230-248 (2009). Reviewer: Ole Christensen (Lyngby) MSC: 43A25 22D10 42C15 PDF BibTeX XML Cite \textit{H. G. Feichtinger} et al., Appl. Comput. Harmon. Anal. 26, No. 2, 230--248 (2009; Zbl 1162.43002) Full Text: DOI
Balan, Radu The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators. (English) Zbl 1145.43002 Trans. Am. Math. Soc. 360, No. 7, 3921-3941 (2008). Reviewer: Gustaf Gripenberg (Hut) MSC: 43A20 42C15 46H30 PDF BibTeX XML Cite \textit{R. Balan}, Trans. Am. Math. Soc. 360, No. 7, 3921--3941 (2008; Zbl 1145.43002) Full Text: DOI
Søndergaard, Peter L. Gabor frames by sampling and periodization. (English) Zbl 1123.42006 Adv. Comput. Math. 27, No. 4, 355-373 (2007). MSC: 42C15 PDF BibTeX XML Cite \textit{P. L. Søndergaard}, Adv. Comput. Math. 27, No. 4, 355--373 (2007; Zbl 1123.42006) Full Text: DOI
Balan, Radu; Landau, Zeph Measure functions for frames. (English) Zbl 1133.46012 J. Funct. Anal. 252, No. 2, 630-676 (2007). Reviewer: Gustaf Gripenberg (Hut) MSC: 46C05 42C40 46B15 PDF BibTeX XML Cite \textit{R. Balan} and \textit{Z. Landau}, J. Funct. Anal. 252, No. 2, 630--676 (2007; Zbl 1133.46012) Full Text: DOI arXiv
Eldar, Yonina C.; Matusiak, Ewa; Werther, Tobias A constructive inversion framework for twisted convolution. (English) Zbl 1131.44005 Monatsh. Math. 150, No. 4, 297-308 (2007). Reviewer: Takeshi Kawazoe (Yokohama) MSC: 44A35 15A30 42C15 PDF BibTeX XML Cite \textit{Y. C. Eldar} et al., Monatsh. Math. 150, No. 4, 297--308 (2007; Zbl 1131.44005) Full Text: DOI arXiv
Gröchenig, Karlheinz; Lyubarskii, Yurii Gabor frames with Hermite functions. (English) Zbl 1160.42013 C. R., Math., Acad. Sci. Paris 344, No. 3, 157-162 (2007). MSC: 42C15 33C90 94A12 PDF BibTeX XML Cite \textit{K. Gröchenig} and \textit{Y. Lyubarskii}, C. R., Math., Acad. Sci. Paris 344, No. 3, 157--162 (2007; Zbl 1160.42013) Full Text: DOI
Folland, G. B. The abstruse meets the applicable: some aspects of time-frequency analysis. (English) Zbl 1128.42014 Proc. Indian Acad. Sci., Math. Sci. 116, No. 2, 121-136 (2006). Reviewer: Gustaf Gripenberg (Hut) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{G. B. Folland}, Proc. Indian Acad. Sci., Math. Sci. 116, No. 2, 121--136 (2006; Zbl 1128.42014) Full Text: DOI arXiv
Balan, Radu; Casazza, Peter G.; Heil, Christopher; Landau, Zeph Density, overcompleteness, and localization of frames. (English) Zbl 1142.42313 Electron. Res. Announc. Am. Math. Soc. 12, 71-86 (2006). MSC: 42C15 46C99 PDF BibTeX XML Cite \textit{R. Balan} et al., Electron. Res. Announc. Am. Math. Soc. 12, 71--86 (2006; Zbl 1142.42313) Full Text: DOI
Feichtinger, H. G.; Führ, H.; Gröchenig, K.; Kaiblinger, N. Operators commuting with a discrete subgroup of translations. (English) Zbl 1113.47019 J. Geom. Anal. 16, No. 1, 53-67 (2006). Reviewer: John Schmeelk (Doha) MSC: 47B38 42C40 46F10 47A15 PDF BibTeX XML Cite \textit{H. G. Feichtinger} et al., J. Geom. Anal. 16, No. 1, 53--67 (2006; Zbl 1113.47019) Full Text: DOI
Han, Deguang Tight frame approximation for multi-frames and super-frames. (English) Zbl 1048.42028 J. Approximation Theory 129, No. 1, 78-93 (2004). MSC: 42C40 42C15 46C05 47B10 PDF BibTeX XML Cite \textit{D. Han}, J. Approx. Theory 129, No. 1, 78--93 (2004; Zbl 1048.42028) Full Text: DOI
Stergioulas, L. K.; Vourdas, A. The Bargmann analytic representation in signal analysis. (English) Zbl 1050.94508 J. Comput. Appl. Math. 167, No. 1, 183-192 (2004). MSC: 94A12 81S30 PDF BibTeX XML Cite \textit{L. K. Stergioulas} and \textit{A. Vourdas}, J. Comput. Appl. Math. 167, No. 1, 183--192 (2004; Zbl 1050.94508) Full Text: DOI
Feichtinger, Hans G.; Kaiblinger, Norbert Varying the time-frequency lattice of Gabor frames. (English) Zbl 1033.42033 Trans. Am. Math. Soc. 356, No. 5, 2001-2023 (2004). MSC: 42C40 47B38 42C15 PDF BibTeX XML Cite \textit{H. G. Feichtinger} and \textit{N. Kaiblinger}, Trans. Am. Math. Soc. 356, No. 5, 2001--2023 (2004; Zbl 1033.42033) Full Text: DOI
Gröchenig, Karlheinz; Leinert, Michael Wiener’s lemma for twisted convolution and Gabor frames. (English) Zbl 1037.22012 J. Am. Math. Soc. 17, No. 1, 1-18 (2004). Reviewer: S. Ganguly (Kolkata) MSC: 22D25 42C15 22E25 47B38 47C15 PDF BibTeX XML Cite \textit{K. Gröchenig} and \textit{M. Leinert}, J. Am. Math. Soc. 17, No. 1, 1--18 (2004; Zbl 1037.22012) Full Text: DOI
Bownik, Marcin; Rzeszotnik, Ziemowit The spectral function of shift-invariant spaces. (English) Zbl 1059.42021 Mich. Math. J. 51, No. 2, 387-414 (2003). Reviewer: Gerlind Plonka (Duisburg) MSC: 42C15 42C40 41A15 42B10 PDF BibTeX XML Cite \textit{M. Bownik} and \textit{Z. Rzeszotnik}, Mich. Math. J. 51, No. 2, 387--414 (2003; Zbl 1059.42021) Full Text: DOI
Han, Deguang Approximations for Gabor and wavelet frames. (English) Zbl 1021.42021 Trans. Am. Math. Soc. 355, No. 8, 3329-3342 (2003). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 47B10 PDF BibTeX XML Cite \textit{D. Han}, Trans. Am. Math. Soc. 355, No. 8, 3329--3342 (2003; Zbl 1021.42021) Full Text: DOI
Hernández, Eugenio; Labate, Demetrio; Weiss, Guido A unified characterization of reproducing systems generated by a finite family. II. (English) Zbl 1039.42032 J. Geom. Anal. 12, No. 4, 615-662 (2002). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{E. Hernández} et al., J. Geom. Anal. 12, No. 4, 615--662 (2002; Zbl 1039.42032) Full Text: DOI
Sun, Wenchang; Zhou, Xingwei Irregular wavelet/Gabor frames. (English) Zbl 1016.42021 Appl. Comput. Harmon. Anal. 13, No. 1, 63-76 (2002). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 PDF BibTeX XML Cite \textit{W. Sun} and \textit{X. Zhou}, Appl. Comput. Harmon. Anal. 13, No. 1, 63--76 (2002; Zbl 1016.42021) Full Text: DOI
Labate, Demetrio A unified characterization of reproducing systems generated by a finite family. (English) Zbl 1029.42026 J. Geom. Anal. 12, No. 3, 469-491 (2002). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{D. Labate}, J. Geom. Anal. 12, No. 3, 469--491 (2002; Zbl 1029.42026) Full Text: DOI
Gilbert, John E.; Nahmod, Andrea R. Bilinear operators with non-smooth symbol. I. (English) Zbl 0994.42014 J. Fourier Anal. Appl. 7, No. 5, 435-467 (2001). Reviewer: Joseph Lakey (Las Cruces) MSC: 42B20 42C40 42B15 42B25 47G10 47H60 PDF BibTeX XML Cite \textit{J. E. Gilbert} and \textit{A. R. Nahmod}, J. Fourier Anal. Appl. 7, No. 5, 435--467 (2001; Zbl 0994.42014) Full Text: DOI EuDML
Li, Shidong; Ogawa, Hidemitsu Pseudo-duals of frames with applications. (English) Zbl 0984.42024 Appl. Comput. Harmon. Anal. 11, No. 2, 289-304 (2001). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{S. Li} and \textit{H. Ogawa}, Appl. Comput. Harmon. Anal. 11, No. 2, 289--304 (2001; Zbl 0984.42024) Full Text: DOI
Strohmer, Thomas Approximation of dual Gabor frames, window decay, and wireless communications. (English) Zbl 0986.42018 Appl. Comput. Harmon. Anal. 11, No. 2, 243-262 (2001). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 41A60 PDF BibTeX XML Cite \textit{T. Strohmer}, Appl. Comput. Harmon. Anal. 11, No. 2, 243--262 (2001; Zbl 0986.42018) Full Text: DOI arXiv
Liu, Youming A characterization for windowed Fourier orthonormal basis with compact support. (English) Zbl 0983.42021 Acta Math. Sin., Engl. Ser. 17, No. 3, 501-506 (2001). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 PDF BibTeX XML Cite \textit{Y. Liu}, Acta Math. Sin., Engl. Ser. 17, No. 3, 501--506 (2001; Zbl 0983.42021) Full Text: DOI
Gabardo, Jean-Pierre; Han, Deguang Subspace Weyl-Heisenberg frames. (English) Zbl 0983.42022 J. Fourier Anal. Appl. 7, No. 4, 419-433 (2001). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 46L10 47A15 PDF BibTeX XML Cite \textit{J.-P. Gabardo} and \textit{D. Han}, J. Fourier Anal. Appl. 7, No. 4, 419--433 (2001; Zbl 0983.42022) Full Text: DOI EuDML
Sun, Wenchang; Zhou, Xingwei On the stability of Gabor frames. (English) Zbl 0979.42020 Adv. Appl. Math. 26, No. 3, 181-191 (2001). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 PDF BibTeX XML Cite \textit{W. Sun} and \textit{X. Zhou}, Adv. Appl. Math. 26, No. 3, 181--191 (2001; Zbl 0979.42020) Full Text: DOI
Casazza, Peter G.; Christensen, Ole; Janssen, A. J. E. M. Weyl-Heisenberg frames, translation invariant systems and the Walnut representation. (English) Zbl 0983.42023 J. Funct. Anal. 180, No. 1, 85-147 (2001). Reviewer: Richard A.Zalik (Auburn University) MSC: 42C40 47B99 PDF BibTeX XML Cite \textit{P. G. Casazza} et al., J. Funct. Anal. 180, No. 1, 85--147 (2001; Zbl 0983.42023) Full Text: DOI arXiv
Strohmer, Thomas Rates of convergence for the approximation of dual shift-invariant systems in \(\ell^2 (\mathbb{Z})\). (English) Zbl 0981.42020 J. Fourier Anal. Appl. 5, No. 6, 599-615 (1999). MSC: 42C40 65T60 41A25 47B35 94A12 PDF BibTeX XML Cite \textit{T. Strohmer}, J. Fourier Anal. Appl. 5, No. 6, 599--615 (1999; Zbl 0981.42020) Full Text: DOI EuDML
Del Prete, Vincenza Estimates, decay properties, and computation of the dual function for Gabor frames. (English) Zbl 0948.42024 J. Fourier Anal. Appl. 5, No. 6, 545-562 (1999). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 41A15 PDF BibTeX XML Cite \textit{V. Del Prete}, J. Fourier Anal. Appl. 5, No. 6, 545--562 (1999; Zbl 0948.42024) Full Text: DOI EuDML
Bölcskei, Helmut A necessary and sufficient condition for dual Weyl-Heisenberg frames to be compactly supported. (English) Zbl 0933.42029 J. Fourier Anal. Appl. 5, No. 5, 409-419 (1999). MSC: 42C40 PDF BibTeX XML Cite \textit{H. Bölcskei}, J. Fourier Anal. Appl. 5, No. 5, 409--419 (1999; Zbl 0933.42029) Full Text: DOI EuDML
Ron, Amos; Shen, Zuowei Affine systems in \(L_2(\mathbb{R}^d)\). II: Dual systems. (English) Zbl 0904.42025 J. Fourier Anal. Appl. 3, No. 5, 618-637 (1997). Reviewer: A.Bultheel (Leuven) MSC: 42C15 42C30 41A63 PDF BibTeX XML Cite \textit{A. Ron} and \textit{Z. Shen}, J. Fourier Anal. Appl. 3, No. 5, 618--637 (1997; Zbl 0904.42025) Full Text: DOI EuDML
Janssen, A. J. E. M. From continuous to discrete Weyl-Heisenberg frames through sampling. (English) Zbl 0884.42022 J. Fourier Anal. Appl. 3, No. 5, 583-596 (1997). MSC: 42C15 94A12 41A58 PDF BibTeX XML Cite \textit{A. J. E. M. Janssen}, J. Fourier Anal. Appl. 3, No. 5, 583--596 (1997; Zbl 0884.42022) Full Text: DOI EuDML
Ron, Amos; Shen, Zuowei Weyl-Heisenberg frames and Riesz bases in \(L_2(\mathbb{R}^d)\). (English) Zbl 0892.42017 Duke Math. J. 89, No. 2, 237-282 (1997). Reviewer: B.Rubin (Jerusalem) MSC: 42C15 PDF BibTeX XML Cite \textit{A. Ron} and \textit{Z. Shen}, Duke Math. J. 89, No. 2, 237--282 (1997; Zbl 0892.42017) Full Text: DOI
Zibulski, Meir; Zeevi, Yehoshua Y. Analysis of multiwindow Gabor-type schemes by frame methods. (English) Zbl 0885.42024 Appl. Comput. Harmon. Anal. 4, No. 2, 188-221 (1997). Reviewer: G.Steidl (Mannheim) MSC: 42C15 94A12 PDF BibTeX XML Cite \textit{M. Zibulski} and \textit{Y. Y. Zeevi}, Appl. Comput. Harmon. Anal. 4, No. 2, 188--221 (1997; Zbl 0885.42024) Full Text: DOI