Ryskamp, Samuel; Maiden, Michelle D.; Biondini, Gino; Hoefer, Mark A. Evolution of truncated and bent gravity wave solitons: the Mach expansion problem. (English) Zbl 07298864 J. Fluid Mech. 909, Article ID A24, 33 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{S. Ryskamp} et al., J. Fluid Mech. 909, Article ID A24, 33 p. (2020; Zbl 07298864) Full Text: DOI
Xia, Jun-Wen; Zhao, Yi-Wei; Lü, Xing Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation. (English) Zbl 1450.35115 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105260, 14 p. (2020). MSC: 35C08 35G25 68W30 PDF BibTeX XML Cite \textit{J.-W. Xia} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105260, 14 p. (2020; Zbl 1450.35115) Full Text: DOI
Duruk Mutlubas, Nilay; Geyer, Anna; Quirchmayr, Ronald Well-posedness of a highly nonlinear shallow water equation on the circle. (English) Zbl 1434.35090 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111849, 13 p. (2020). MSC: 35Q35 35L30 PDF BibTeX XML Cite \textit{N. Duruk Mutlubas} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111849, 13 p. (2020; Zbl 1434.35090) Full Text: DOI
Wilkening, Jon Harmonic stability of standing water waves. (English) Zbl 1433.76021 Q. Appl. Math. 78, No. 2, 219-260 (2020). MSC: 76B07 76B15 65M70 76M22 PDF BibTeX XML Cite \textit{J. Wilkening}, Q. Appl. Math. 78, No. 2, 219--260 (2020; Zbl 1433.76021) Full Text: DOI
Rodríguez-Sanjurjo, Adrián Instability of equatorially-trapped nonhydrostatic internal geophysical water waves. (English) Zbl 07221256 Wave Motion 88, 144-152 (2019). MSC: 76B15 76E20 37H15 PDF BibTeX XML Cite \textit{A. Rodríguez-Sanjurjo}, Wave Motion 88, 144--152 (2019; Zbl 07221256) Full Text: DOI
Khusnutdinova, Karima R.; Tranter, Matthew R. Nonlinear longitudinal bulk strain waves in layered elastic waveguides. (English) Zbl 1447.35316 Berezovski, Arkadi (ed.) et al., Applied wave mathematics II. Selected topics in solids, fluids, and mathematical methods and complexity. Cham: Springer. Math. Planet Earth 6, 125-150 (2019). MSC: 35Q74 74J10 74J20 74B20 35C08 37K60 82B20 65M06 65M99 35Q35 PDF BibTeX XML Cite \textit{K. R. Khusnutdinova} and \textit{M. R. Tranter}, Math. Planet Earth 6, 125--150 (2019; Zbl 1447.35316) Full Text: DOI
Stuhlmeier, Raphael; Vrecica, Teodor; Toledo, Yaron Nonlinear wave interaction in coastal and open seas: deterministic and stochastic theory. (English) Zbl 1445.76027 Henry, David (ed.) et al., Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 – December 7, 2017. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 151-181 (2019). MSC: 76B15 76M35 76-02 86A05 PDF BibTeX XML Cite \textit{R. Stuhlmeier} et al., in: Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017. Cham: Birkhäuser. 151--181 (2019; Zbl 1445.76027) Full Text: DOI
Ding, Cui-Cui; Gao, Yi-Tian; Deng, Gao-Fu Breather and hybrid solutions for a generalized \((3+1)\)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves. (English) Zbl 1430.37071 Nonlinear Dyn. 97, No. 4, 2023-2040 (2019). MSC: 37K10 37K40 76B15 76B25 PDF BibTeX XML Cite \textit{C.-C. Ding} et al., Nonlinear Dyn. 97, No. 4, 2023--2040 (2019; Zbl 1430.37071) Full Text: DOI
Yu, Yang; Pei, Hai-Long; Xu, Cheng-Zhong Identification of water depth and velocity potential for water waves. (English) Zbl 1425.93136 Syst. Control Lett. 125, 29-36 (2019). MSC: 93C20 76B15 35Q35 35L05 PDF BibTeX XML Cite \textit{Y. Yu} et al., Syst. Control Lett. 125, 29--36 (2019; Zbl 1425.93136) Full Text: DOI
Umeyama, Motohiko Velocity and pressure in rear-end collisions between two solitary waves with and without an underlying current. (English) Zbl 1418.76018 J. Math. Fluid Mech. 21, No. 3, Paper No. 37, 15 p. (2019). MSC: 76B25 76B07 PDF BibTeX XML Cite \textit{M. Umeyama}, J. Math. Fluid Mech. 21, No. 3, Paper No. 37, 15 p. (2019; Zbl 1418.76018) Full Text: DOI
James, François; Lagrée, Pierre-Yves; Le, Minh H.; Legrand, Mathilde Towards a new friction model for shallow water equations through an interactive viscous layer. (English) Zbl 1426.35151 ESAIM, Math. Model. Numer. Anal. 53, No. 1, 269-299 (2019). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35L60 35L65 35Q35 65M08 76N17 PDF BibTeX XML Cite \textit{F. James} et al., ESAIM, Math. Model. Numer. Anal. 53, No. 1, 269--299 (2019; Zbl 1426.35151) Full Text: DOI
Luo, Ting; Liu, Yue; Mi, Yongsheng; Moon, Byungsoo On a shallow-water model with the Coriolis effect. (English) Zbl 1420.35251 J. Differ. Equations 267, No. 5, 3232-3270 (2019). MSC: 35Q35 35B10 35B65 76U05 35C07 35B40 76B15 35Q53 PDF BibTeX XML Cite \textit{T. Luo} et al., J. Differ. Equations 267, No. 5, 3232--3270 (2019; Zbl 1420.35251) Full Text: DOI
Rybkin, Alexei Method for solving hyperbolic systems with initial data on non-characteristic manifolds with applications to the shallow water wave equations. (English) Zbl 1412.35198 Appl. Math. Lett. 93, 72-78 (2019). MSC: 35L45 35Q35 PDF BibTeX XML Cite \textit{A. Rybkin}, Appl. Math. Lett. 93, 72--78 (2019; Zbl 1412.35198) Full Text: DOI
Umeyama, Motohiko Theoretical considerations, flow visualization and pressure measurements for rear-end collisions of two unequal solitary waves. (English) Zbl 1411.76016 J. Math. Fluid Mech. 21, No. 1, Paper No. 12, 23 p. (2019). MSC: 76B25 76B07 PDF BibTeX XML Cite \textit{M. Umeyama}, J. Math. Fluid Mech. 21, No. 1, Paper No. 12, 23 p. (2019; Zbl 1411.76016) Full Text: DOI
Selima, Ehab S.; Mao, Yadan; Yao, Xiaohua; Morad, Adel M.; Abdelhamid, Talaat; Selim, Basem I. Applicable symbolic computations on dynamics of small-amplitude long waves and Davey-Stewartson equations in finite water depth. (English) Zbl 07166737 Appl. Math. Modelling 57, 376-390 (2018). MSC: 35 76 PDF BibTeX XML Cite \textit{E. S. Selima} et al., Appl. Math. Modelling 57, 376--390 (2018; Zbl 07166737) Full Text: DOI
Tao, Bo Fully nonlinear capillary-gravity solitary waves under a tangential electric field. II: Dynamics. (English) Zbl 1428.78014 Comput. Math. Appl. 76, No. 4, 788-798 (2018). MSC: 78A40 78A25 76W05 76B25 76B15 35C08 35G60 35Q31 35B35 PDF BibTeX XML Cite \textit{B. Tao}, Comput. Math. Appl. 76, No. 4, 788--798 (2018; Zbl 1428.78014) Full Text: DOI
Fu, Chen; Lu, Chang Na; Yang, Hong Wei Time-space fractional \((2+1)\) dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions. (English) Zbl 1445.35281 Adv. Difference Equ. 2018, Paper No. 56, 20 p. (2018). MSC: 35Q55 35R11 26A33 PDF BibTeX XML Cite \textit{C. Fu} et al., Adv. Difference Equ. 2018, Paper No. 56, 20 p. (2018; Zbl 1445.35281) Full Text: DOI
Gaillard, Pierre The Johnson equation, Fredholm and Wronskian representations of solutions, and the case of order three. (English) Zbl 1412.76018 Adv. Math. Phys. 2018, Article ID 1642139, 18 p. (2018). MSC: 76B15 35Q53 PDF BibTeX XML Cite \textit{P. Gaillard}, Adv. Math. Phys. 2018, Article ID 1642139, 18 p. (2018; Zbl 1412.76018) Full Text: DOI
Düll, Wolf-Patrick On the mathematical description of time-dependent surface water waves. (English) Zbl 1446.76079 Jahresber. Dtsch. Math.-Ver. 120, No. 2, 117-141 (2018). Reviewer: Balswaroop Bhatt (St. Augustine) MSC: 76B15 76-02 35Q35 35Q53 35Q55 PDF BibTeX XML Cite \textit{W.-P. Düll}, Jahresber. Dtsch. Math.-Ver. 120, No. 2, 117--141 (2018; Zbl 1446.76079) Full Text: DOI
Andrade, D.; Nachbin, A. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography. (English) Zbl 1404.76033 J. Fluid Mech. 845, 321-345 (2018). MSC: 76B15 86A05 PDF BibTeX XML Cite \textit{D. Andrade} and \textit{A. Nachbin}, J. Fluid Mech. 845, 321--345 (2018; Zbl 1404.76033) Full Text: DOI
Arredondo, Robert; McHugh, John P. Mean displacement near an interface in a nonlinear string. (English) Zbl 1391.74114 SIAM J. Appl. Math. 78, No. 3, 1470-1488 (2018). Reviewer: Fiazud Din Zaman (Lahore) MSC: 74J30 74K05 74L05 86A40 PDF BibTeX XML Cite \textit{R. Arredondo} and \textit{J. P. McHugh}, SIAM J. Appl. Math. 78, No. 3, 1470--1488 (2018; Zbl 1391.74114) Full Text: DOI
Leach, J. A. The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation. IV: Time dependent coefficients. (English) Zbl 1388.35171 Q. Appl. Math. 76, No. 2, 361-382 (2018). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 35C20 PDF BibTeX XML Cite \textit{J. A. Leach}, Q. Appl. Math. 76, No. 2, 361--382 (2018; Zbl 1388.35171) Full Text: DOI
Ramos, J. I.; García-López, C. M. Time-linearized, compact methods for the inviscid GRLW equation subject to initial Gaussian conditions. (English) Zbl 07163408 Appl. Math. Modelling 48, 353-383 (2017). MSC: 76 65 PDF BibTeX XML Cite \textit{J. I. Ramos} and \textit{C. M. García-López}, Appl. Math. Modelling 48, 353--383 (2017; Zbl 07163408) Full Text: DOI
Turner, M. R.; Bridges, T. J.; Alemi Ardakani, H. Lagrangian particle path formulation of multilayer shallow-water flows dynamically coupled to vessel motion. (English) Zbl 06847658 J. Eng. Math. 106, 75-106 (2017). MSC: 76 65 35 PDF BibTeX XML Cite \textit{M. R. Turner} et al., J. Eng. Math. 106, 75--106 (2017; Zbl 06847658) Full Text: DOI
Mylonas, I. K.; Ward, C. B.; Kevrekidis, P. G.; Rothos, V. M.; Frantzeskakis, D. J. Asymptotic expansions and solitons of the Camassa-Holm - nonlinear Schrödinger equation. (English) Zbl 1378.35280 Phys. Lett., A 381, No. 48, 3965-3971 (2017). MSC: 35Q55 35C08 35Q53 PDF BibTeX XML Cite \textit{I. K. Mylonas} et al., Phys. Lett., A 381, No. 48, 3965--3971 (2017; Zbl 1378.35280) Full Text: DOI
Fan, Lili; Gao, Hongjun; Mao, Lei Extrema of the dynamic pressure in an irrotational Stokes wave with underlying currents and infinite depth. (English) Zbl 1370.35231 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 162, 13-21 (2017). MSC: 35Q35 35J15 PDF BibTeX XML Cite \textit{L. Fan} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 162, 13--21 (2017; Zbl 1370.35231) Full Text: DOI
Ionescu-Kruse, Delia Variational derivation of a geophysical Camassa-Holm type shallow water equation. (English) Zbl 1387.86015 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 156, 286-294 (2017). MSC: 86A05 35Q53 35Q86 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 156, 286--294 (2017; Zbl 1387.86015) Full Text: DOI
Gagnon, Ludovick Qualitative description of the particle trajectories for the \(N\)-solitons solution of the Korteweg-de Vries equation. (English) Zbl 1382.35256 Discrete Contin. Dyn. Syst. 37, No. 3, 1489-1507 (2017). MSC: 35Q53 35C08 76B15 35Q35 PDF BibTeX XML Cite \textit{L. Gagnon}, Discrete Contin. Dyn. Syst. 37, No. 3, 1489--1507 (2017; Zbl 1382.35256) Full Text: DOI arXiv
Sastre-Gomez, Silvia Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. (English) Zbl 1361.35137 Discrete Contin. Dyn. Syst. 37, No. 5, 2669-2680 (2017). MSC: 35Q31 35Q35 35R35 35J25 35D30 76B15 PDF BibTeX XML Cite \textit{S. Sastre-Gomez}, Discrete Contin. Dyn. Syst. 37, No. 5, 2669--2680 (2017; Zbl 1361.35137) Full Text: DOI
El, G. A.; Hoefer, M. A.; Shearer, M. Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws. (English) Zbl 1364.35307 SIAM Rev. 59, No. 1, 3-61 (2017). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35L65 74J30 35C07 PDF BibTeX XML Cite \textit{G. A. El} et al., SIAM Rev. 59, No. 1, 3--61 (2017; Zbl 1364.35307) Full Text: DOI
Sprenger, Patrick; Hoefer, M. A. Shock waves in dispersive hydrodynamics with nonconvex dispersion. (English) Zbl 1382.76157 SIAM J. Appl. Math. 77, No. 1, 26-50 (2017). MSC: 76L05 35L67 35Q53 74J40 PDF BibTeX XML Cite \textit{P. Sprenger} and \textit{M. A. Hoefer}, SIAM J. Appl. Math. 77, No. 1, 26--50 (2017; Zbl 1382.76157) Full Text: DOI
Fan, Lili; Gao, Hongjun Instability of equatorial edge waves in the background flow. (English) Zbl 1355.35182 Proc. Am. Math. Soc. 145, No. 2, 765-778 (2017). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q86 76E20 34E20 76B70 PDF BibTeX XML Cite \textit{L. Fan} and \textit{H. Gao}, Proc. Am. Math. Soc. 145, No. 2, 765--778 (2017; Zbl 1355.35182) Full Text: DOI
Rodríguez-Sanjurjo, Adrián Global diffeomorphism of the Lagrangian flow-map for equatorially-trapped internal water waves. (English) Zbl 1354.35161 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 149, 156-164 (2017). MSC: 35Q86 35A16 35C05 35Q35 76B15 86A05 PDF BibTeX XML Cite \textit{A. Rodríguez-Sanjurjo}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 149, 156--164 (2017; Zbl 1354.35161) Full Text: DOI
Khusnutdinova, Karima R.; Zhang, Xizheng Nonlinear ring waves in a two-layer fluid. (English) Zbl 1415.76073 Physica D 333, 208-221 (2016). MSC: 76B15 35Q53 65M06 65Z05 PDF BibTeX XML Cite \textit{K. R. Khusnutdinova} and \textit{X. Zhang}, Physica D 333, 208--221 (2016; Zbl 1415.76073) Full Text: DOI
David, Claire; Sagaut, Pierre Structural stability of lattice Boltzmann schemes. (English) Zbl 1400.76063 Physica A 444, 1-8 (2016). MSC: 76M28 76M20 65N06 35L05 PDF BibTeX XML Cite \textit{C. David} and \textit{P. Sagaut}, Physica A 444, 1--8 (2016; Zbl 1400.76063) Full Text: DOI
Khusnutdinova, Karima R.; Zhang, Xizheng Long ring waves in a stratified fluid over a shear flow. (English) Zbl 1445.86003 J. Fluid Mech. 794, 17-44 (2016). MSC: 86A05 76B15 76B55 76B70 PDF BibTeX XML Cite \textit{K. R. Khusnutdinova} and \textit{X. Zhang}, J. Fluid Mech. 794, 17--44 (2016; Zbl 1445.86003) Full Text: DOI
Quirchmayr, Ronald A new highly nonlinear shallow water wave equation. (English) Zbl 1360.35189 J. Evol. Equ. 16, No. 3, 539-567 (2016). MSC: 35Q35 35L30 PDF BibTeX XML Cite \textit{R. Quirchmayr}, J. Evol. Equ. 16, No. 3, 539--567 (2016; Zbl 1360.35189) Full Text: DOI
Henry, David; Sastre-Gomez, Silvia Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current. (English) Zbl 1359.76059 J. Math. Fluid Mech. 18, No. 4, 795-804 (2016). MSC: 76B15 74G05 86A05 PDF BibTeX XML Cite \textit{D. Henry} and \textit{S. Sastre-Gomez}, J. Math. Fluid Mech. 18, No. 4, 795--804 (2016; Zbl 1359.76059) Full Text: DOI
Johnson, Robin Stanley Asymptotic methods for weakly nonlinear and other water waves. (English) Zbl 1354.76025 Constantin, Adrian et al., Nonlinear water waves. Cetraro, Italy, June 24–28, 2013. Edited by the first author. Cham: Springer (ISBN 978-3-319-31461-7/pbk; 978-3-319-31462-4/ebook). Lecture Notes in Mathematics 2158. CIME Foundation Subseries, 121-196 (2016). MSC: 76B15 76B25 76M45 PDF BibTeX XML Cite \textit{R. S. Johnson}, Lect. Notes Math. 2158, 121--196 (2016; Zbl 1354.76025) Full Text: DOI
Constantin, Adrian Exact travelling periodic water waves in two-dimensional irrotational flows. (English) Zbl 1354.76024 Constantin, Adrian et al., Nonlinear water waves. Cetraro, Italy, June 24–28, 2013. Edited by the first author. Cham: Springer (ISBN 978-3-319-31461-7/pbk; 978-3-319-31462-4/ebook). Lecture Notes in Mathematics 2158. CIME Foundation Subseries, 1-82 (2016). MSC: 76B15 35Q31 PDF BibTeX XML Cite \textit{A. Constantin}, Lect. Notes Math. 2158, 1--82 (2016; Zbl 1354.76024) Full Text: DOI
Shashikanth, Banavara N. Kirchhoff’s equations of motion via a constrained Zakharov system. (English) Zbl 1418.37109 J. Geom. Mech. 8, No. 4, 461-485 (2016). MSC: 37J60 37J35 70E18 70H45 PDF BibTeX XML Cite \textit{B. N. Shashikanth}, J. Geom. Mech. 8, No. 4, 461--485 (2016; Zbl 1418.37109) Full Text: DOI
Kogelbauer, Florian On the symmetry of spatially periodic two-dimensional water waves. (English) Zbl 1354.35104 Discrete Contin. Dyn. Syst. 36, No. 12, 7057-7061 (2016). MSC: 35Q35 35B50 76B15 35C07 PDF BibTeX XML Cite \textit{F. Kogelbauer}, Discrete Contin. Dyn. Syst. 36, No. 12, 7057--7061 (2016; Zbl 1354.35104) Full Text: DOI
Basu, Biswajit Irrotational two-dimensional free-surface steady water flows over a flat bed with underlying currents. (English) Zbl 1352.35107 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 147, 110-124 (2016). MSC: 35Q35 35J15 35B50 PDF BibTeX XML Cite \textit{B. Basu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 147, 110--124 (2016; Zbl 1352.35107) Full Text: DOI
Wang, Mingliang; Zhang, Jinliang; Li, Xiangzheng Decay mode solutions to cylindrical KP equation. (English) Zbl 1356.35211 Appl. Math. Lett. 62, 29-34 (2016). MSC: 35Q53 76B15 PDF BibTeX XML Cite \textit{M. Wang} et al., Appl. Math. Lett. 62, 29--34 (2016; Zbl 1356.35211) Full Text: DOI
Fontelos, M. A.; Lecaros, R.; López-Ríos, J. C.; Ortega, J. H. Stationary shapes for 2-d water-waves and hydraulic jumps. (English) Zbl 1346.76019 J. Math. Phys. 57, No. 8, 081520, 22 p. (2016). MSC: 76B15 76B07 35Q35 35A01 35A02 PDF BibTeX XML Cite \textit{M. A. Fontelos} et al., J. Math. Phys. 57, No. 8, 081520, 22 p. (2016; Zbl 1346.76019) Full Text: DOI
Lyons, Tony The pressure in a deep-water Stokes wave of greatest height. (English) Zbl 1347.35196 J. Math. Fluid Mech. 18, No. 2, 209-218 (2016). Reviewer: Qin Meng Zhao (Beijing) MSC: 35Q31 35Q35 76B15 76D07 76D33 35D30 PDF BibTeX XML Cite \textit{T. Lyons}, J. Math. Fluid Mech. 18, No. 2, 209--218 (2016; Zbl 1347.35196) Full Text: DOI arXiv
Bani-Yaghoub, Majid; Yao, Guangming; Voulov, Hristo Existence and stability of stationary waves of a population model with strong Allee effect. (English) Zbl 1382.35307 J. Comput. Appl. Math. 307, 385-393 (2016). MSC: 35Q92 92D25 35R10 37N25 PDF BibTeX XML Cite \textit{M. Bani-Yaghoub} et al., J. Comput. Appl. Math. 307, 385--393 (2016; Zbl 1382.35307) Full Text: DOI
Dutykh, Denys; Ionescu-Kruse, Delia Travelling wave solutions for some two-component shallow water models. (English) Zbl 1342.35247 J. Differ. Equations 261, No. 2, 1099-1114 (2016). MSC: 35Q35 35C07 35C08 76B15 76B25 PDF BibTeX XML Cite \textit{D. Dutykh} and \textit{D. Ionescu-Kruse}, J. Differ. Equations 261, No. 2, 1099--1114 (2016; Zbl 1342.35247) Full Text: DOI
Varholm, Kristoffer Solitary gravity-capillary water waves with point vortices. (English) Zbl 1333.35171 Discrete Contin. Dyn. Syst. 36, No. 7, 3927-3959 (2016). MSC: 35Q31 35C07 76B25 PDF BibTeX XML Cite \textit{K. Varholm}, Discrete Contin. Dyn. Syst. 36, No. 7, 3927--3959 (2016; Zbl 1333.35171) Full Text: DOI arXiv
Kogelbauer, Florian On symmetric water waves with constant vorticity. (English) Zbl 1420.35213 J. Nonlinear Math. Phys. 22, No. 4, 494-498 (2015). MSC: 35Q31 42B37 76B15 PDF BibTeX XML Cite \textit{F. Kogelbauer}, J. Nonlinear Math. Phys. 22, No. 4, 494--498 (2015; Zbl 1420.35213) Full Text: DOI
Johnson, R. S. An ocean undercurrent, a thermocline, a free surface, with waves: a problem in classical fluid mechanics. (English) Zbl 1421.76036 J. Nonlinear Math. Phys. 22, No. 4, 475-493 (2015). MSC: 76B15 76B55 35R35 PDF BibTeX XML Cite \textit{R. S. Johnson}, J. Nonlinear Math. Phys. 22, No. 4, 475--493 (2015; Zbl 1421.76036) Full Text: DOI
Demiray, Hilmi Modulation of electron-acoustic waves in a plasma with vortex electron distribution. (English) Zbl 1401.35258 Int. J. Nonlinear Sci. Numer. Simul. 16, No. 2, 61-66 (2015). MSC: 35Q51 35C08 35Q55 82D10 PDF BibTeX XML Cite \textit{H. Demiray}, Int. J. Nonlinear Sci. Numer. Simul. 16, No. 2, 61--66 (2015; Zbl 1401.35258) Full Text: DOI
Zhang, Yi; Yim, Solomon C.; Del Pin, Facundo A nonoverlapping heterogeneous domain decomposition method for three-dimensional gravity wave impact problems. (English) Zbl 1390.76384 Comput. Fluids 106, 154-170 (2015). MSC: 76M10 76M15 76D05 65M60 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Comput. Fluids 106, 154--170 (2015; Zbl 1390.76384) Full Text: DOI
Dutykh, Denys; Chhay, Marx; Clamond, Didier Numerical study of the generalised Klein-Gordon equations. (English) Zbl 1364.76028 Physica D 304-305, 23-33 (2015). MSC: 76B15 65M70 37K05 PDF BibTeX XML Cite \textit{D. Dutykh} et al., Physica D 304--305, 23--33 (2015; Zbl 1364.76028) Full Text: DOI
Masoero, Davide; Raimondo, Andrea; Antunes, Pedro R. S. Critical behavior for scalar nonlinear waves. (English) Zbl 1364.35281 Physica D 292-293, 1-7 (2015). MSC: 35Q35 35A22 82B26 PDF BibTeX XML Cite \textit{D. Masoero} et al., Physica D 292--293, 1--7 (2015; Zbl 1364.35281) Full Text: DOI arXiv
Zerroukat, M.; Allen, T. A moist Boussinesq shallow water equations set for testing atmospheric models. (English) Zbl 1349.86044 J. Comput. Phys. 290, 55-72 (2015). MSC: 86A10 76B15 76D05 35Q30 PDF BibTeX XML Cite \textit{M. Zerroukat} and \textit{T. Allen}, J. Comput. Phys. 290, 55--72 (2015; Zbl 1349.86044) Full Text: DOI
Pereira, P. J. S.; Lopes, N. D.; Trabucho, L. Soliton-type and other travelling wave solutions for an improved class of nonlinear sixth-order Boussinesq equations. (English) Zbl 1348.35050 Nonlinear Dyn. 82, No. 1-2, 783-818 (2015). MSC: 35C08 35C07 35Q35 PDF BibTeX XML Cite \textit{P. J. S. Pereira} et al., Nonlinear Dyn. 82, No. 1--2, 783--818 (2015; Zbl 1348.35050) Full Text: DOI
Khan, Kamruzzaman; Ali Akbar, M. Exact traveling wave solutions of Kadomtsev-Petviashvili equation. (English) Zbl 1326.35318 J. Egypt. Math. Soc. 23, No. 2, 278-281 (2015). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{K. Khan} and \textit{M. Ali Akbar}, J. Egypt. Math. Soc. 23, No. 2, 278--281 (2015; Zbl 1326.35318) Full Text: DOI
Zhuang, Kaige; Du, Zengji; Lin, Xiaojie Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method. (English) Zbl 1345.35007 Nonlinear Dyn. 80, No. 1-2, 629-635 (2015). MSC: 35B25 35Q53 37K10 37C29 PDF BibTeX XML Cite \textit{K. Zhuang} et al., Nonlinear Dyn. 80, No. 1--2, 629--635 (2015; Zbl 1345.35007) Full Text: DOI
Hsu, Hung-Chu Edge waves with longshore currents. (English) Zbl 1327.76030 Q. Appl. Math. 73, No. 3, 593-598 (2015). MSC: 76B15 35B36 74G05 PDF BibTeX XML Cite \textit{H.-C. Hsu}, Q. Appl. Math. 73, No. 3, 593--598 (2015; Zbl 1327.76030) Full Text: DOI
Kogelbauer, Florian Symmetric irrotational water waves are traveling waves. (English) Zbl 1321.35163 J. Differ. Equations 259, No. 10, 5271-5275 (2015). MSC: 35Q35 35B50 76B15 PDF BibTeX XML Cite \textit{F. Kogelbauer}, J. Differ. Equations 259, No. 10, 5271--5275 (2015; Zbl 1321.35163) Full Text: DOI
Lin, Te-Sheng; Pradas, Marc; Kalliadasis, Serafim; Papageorgiou, Demetrios T.; Tseluiko, Dmitri Coherent structures in nonlocal dispersive active-dissipative systems. (English) Zbl 1335.35218 SIAM J. Appl. Math. 75, No. 2, 538-563 (2015). Reviewer: Milan Pokorný (Praha) MSC: 35Q53 35B65 35B41 35R10 37L15 65P40 76D33 PDF BibTeX XML Cite \textit{T.-S. Lin} et al., SIAM J. Appl. Math. 75, No. 2, 538--563 (2015; Zbl 1335.35218) Full Text: DOI
Ionescu-Kruse, Delia A new two-component system modelling shallow-water waves. (English) Zbl 1318.35079 Q. Appl. Math. 73, No. 2, 331-346 (2015). MSC: 35Q35 76B15 76M30 37K05 76B25 35C08 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, Q. Appl. Math. 73, No. 2, 331--346 (2015; Zbl 1318.35079) Full Text: DOI arXiv
Ionescu-Kruse, Delia Short-wavelength instabilities of edge waves in stratified water. (English) Zbl 1302.76070 Discrete Contin. Dyn. Syst. 35, No. 5, 2053-2066 (2015). MSC: 76E99 76B15 76B70 35Q35 35B36 34E20 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, Discrete Contin. Dyn. Syst. 35, No. 5, 2053--2066 (2015; Zbl 1302.76070) Full Text: DOI
Godefroy, Akmel Dé Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. (English) Zbl 1304.35136 Discrete Contin. Dyn. Syst. 35, No. 1, 117-137 (2015). MSC: 35B44 35A01 35B40 35Q35 PDF BibTeX XML Cite \textit{A. D. Godefroy}, Discrete Contin. Dyn. Syst. 35, No. 1, 117--137 (2015; Zbl 1304.35136) Full Text: DOI
Gagarina, E.; Ambati, V. R.; van der Vegt, J. J. W.; Bokhove, O. Variational space-time (dis)continuous Galerkin method for nonlinear free surface water waves. (English) Zbl 1349.76204 J. Comput. Phys. 275, 459-483 (2014). MSC: 76M10 65M60 76D33 PDF BibTeX XML Cite \textit{E. Gagarina} et al., J. Comput. Phys. 275, 459--483 (2014; Zbl 1349.76204) Full Text: DOI
Tao, Bo; Guo, D. L. Fully nonlinear capillary-gravity wave patterns under the tangential electric field. (English) Zbl 1381.78007 Comput. Math. Appl. 67, No. 3, 627-635 (2014). MSC: 78A40 78A25 PDF BibTeX XML Cite \textit{B. Tao} and \textit{D. L. Guo}, Comput. Math. Appl. 67, No. 3, 627--635 (2014; Zbl 1381.78007) Full Text: DOI
Sanford, Nathan; Kodama, Keri; Carter, John D.; Kalisch, Henrik Stability of traveling wave solutions to the Whitham equation. (English) Zbl 1331.35310 Phys. Lett., A 378, No. 30-31, 2100-2107 (2014). MSC: 35Q53 35C07 35B35 35B10 PDF BibTeX XML Cite \textit{N. Sanford} et al., Phys. Lett., A 378, No. 30--31, 2100--2107 (2014; Zbl 1331.35310) Full Text: DOI
Bridges, Thomas J. Emergence of dispersion in shallow water hydrodynamics via modulation of uniform flow. (English) Zbl 1306.76008 J. Fluid Mech. 761, R1, 12 p. (2014). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{T. J. Bridges}, J. Fluid Mech. 761, R1, 12 p. (2014; Zbl 1306.76008) Full Text: DOI
Sun, Shu-Ming Existence theory of capillary-gravity waves on water of finite depth. (English) Zbl 1308.76042 Math. Control Relat. Fields 4, No. 3, 315-363 (2014). MSC: 76B15 35Q31 76B25 PDF BibTeX XML Cite \textit{S.-M. Sun}, Math. Control Relat. Fields 4, No. 3, 315--363 (2014; Zbl 1308.76042) Full Text: DOI
Lai, Shaoyong; Wu, Meng Global weak solutions for a generalized Dullin-Gottwald-Holm equation in the space \(H^1(\mathbb R)\). (English) Zbl 1304.35557 Bound. Value Probl. 2014, Paper No. 203, 19 p. (2014). MSC: 35Q35 35Q51 35Q53 35D30 35A01 PDF BibTeX XML Cite \textit{S. Lai} and \textit{M. Wu}, Bound. Value Probl. 2014, Paper No. 203, 19 p. (2014; Zbl 1304.35557) Full Text: DOI
Matioc, Anca-Voichita On the particle motion in geophysical deep water waves traveling over uniform currents. (English) Zbl 1298.76050 Q. Appl. Math. 72, No. 3, 455-469 (2014). MSC: 76B15 74G05 37N10 PDF BibTeX XML Cite \textit{A.-V. Matioc}, Q. Appl. Math. 72, No. 3, 455--469 (2014; Zbl 1298.76050) Full Text: DOI arXiv
Ionescu-Kruse, Delia On the small-amplitude long waves in linear shear flows and the Camassa-Holm equation. (English) Zbl 06304581 J. Math. Fluid Mech. 16, No. 2, 365-374 (2014). MSC: 76B15 76M30 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, J. Math. Fluid Mech. 16, No. 2, 365--374 (2014; Zbl 06304581) Full Text: DOI
Tian, Shou-Fu; Zhang, Hong-Qing On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. (English) Zbl 1288.35403 Stud. Appl. Math. 132, No. 3, 212-246 (2014). MSC: 35Q35 37K10 37K35 35C08 35B10 14H42 PDF BibTeX XML Cite \textit{S.-F. Tian} and \textit{H.-Q. Zhang}, Stud. Appl. Math. 132, No. 3, 212--246 (2014; Zbl 1288.35403) Full Text: DOI
Ionescu-Kruse, Delia Instability of edge waves along a sloping beach. (English) Zbl 1295.35062 J. Differ. Equations 256, No. 12, 3999-4012 (2014). Reviewer: Titus Petrila (Cluj-Napoca) MSC: 35B35 76E99 35Q35 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, J. Differ. Equations 256, No. 12, 3999--4012 (2014; Zbl 1295.35062) Full Text: DOI
Martin, Calin Iulian; Matioc, Bogdan-Vasile Existence of capillary-gravity water waves with piecewise constant vorticity. (English) Zbl 1442.76025 J. Differ. Equations 256, No. 8, 3086-3114 (2014). MSC: 76B15 76B03 76B45 76B70 35Q35 PDF BibTeX XML Cite \textit{C. I. Martin} and \textit{B.-V. Matioc}, J. Differ. Equations 256, No. 8, 3086--3114 (2014; Zbl 1442.76025) Full Text: DOI arXiv
Zuo, Da-Wei; Gao, Yi-Tian; Meng, Gao-Qing; Shen, Yu-Jia; Yu, Xin Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. (English) Zbl 1283.35116 Nonlinear Dyn. 75, No. 4, 701-708 (2014). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{D.-W. Zuo} et al., Nonlinear Dyn. 75, No. 4, 701--708 (2014; Zbl 1283.35116) Full Text: DOI
Stuhlmeier, Raphael Internal Gerstner waves on a sloping bed. (English) Zbl 1292.76022 Discrete Contin. Dyn. Syst. 34, No. 8, 3183-3192 (2014). MSC: 76B15 76B55 PDF BibTeX XML Cite \textit{R. Stuhlmeier}, Discrete Contin. Dyn. Syst. 34, No. 8, 3183--3192 (2014; Zbl 1292.76022) Full Text: DOI
Matioc, Bogdan-Vasile A characterization of the symmetric steady water waves in terms of the underlying flow. (English) Zbl 1292.76019 Discrete Contin. Dyn. Syst. 34, No. 8, 3125-3133 (2014). MSC: 76B15 35Q31 35B50 26E05 PDF BibTeX XML Cite \textit{B.-V. Matioc}, Discrete Contin. Dyn. Syst. 34, No. 8, 3125--3133 (2014; Zbl 1292.76019) Full Text: DOI arXiv
Martin, Calin Iulian Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. (English) Zbl 1292.35220 Discrete Contin. Dyn. Syst. 34, No. 8, 3109-3123 (2014). MSC: 35Q31 35Q35 76D33 76D45 12D10 PDF BibTeX XML Cite \textit{C. I. Martin}, Discrete Contin. Dyn. Syst. 34, No. 8, 3109--3123 (2014; Zbl 1292.35220) Full Text: DOI
Lyons, Tony Particle trajectories in extreme Stokes waves over infinite depth. (English) Zbl 1292.76017 Discrete Contin. Dyn. Syst. 34, No. 8, 3095-3107 (2014). MSC: 76B15 35B50 35Q35 PDF BibTeX XML Cite \textit{T. Lyons}, Discrete Contin. Dyn. Syst. 34, No. 8, 3095--3107 (2014; Zbl 1292.76017) Full Text: DOI
Kovalyov, Mikhail On the nature of large and rogue waves. (English) Zbl 1292.76014 Discrete Contin. Dyn. Syst. 34, No. 8, 3061-3093 (2014). MSC: 76B15 76B25 35Q35 35Q51 PDF BibTeX XML Cite \textit{M. Kovalyov}, Discrete Contin. Dyn. Syst. 34, No. 8, 3061--3093 (2014; Zbl 1292.76014) Full Text: DOI arXiv
Ionescu-Kruse, Delia; Matioc, Anca-Voichita Small-amplitude equatorial water waves with constant vorticity: dispersion relations and particle trajectories. (English) Zbl 1292.35296 Discrete Contin. Dyn. Syst. 34, No. 8, 3045-3060 (2014). MSC: 35Q86 37N10 76B15 76F10 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse} and \textit{A.-V. Matioc}, Discrete Contin. Dyn. Syst. 34, No. 8, 3045--3060 (2014; Zbl 1292.35296) Full Text: DOI
Henry, David; Ivanov, Rossen One-dimensional weakly nonlinear model equations for Rossby waves. (English) Zbl 1292.35230 Discrete Contin. Dyn. Syst. 34, No. 8, 3025-3034 (2014). MSC: 35Q35 35Q51 35Q53 37K10 PDF BibTeX XML Cite \textit{D. Henry} and \textit{R. Ivanov}, Discrete Contin. Dyn. Syst. 34, No. 8, 3025--3034 (2014; Zbl 1292.35230) Full Text: DOI arXiv
Martin, Calin Iulian Equatorial wind waves with capillary effects and stagnation points. (English) Zbl 1283.35146 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 96, 1-17 (2014). MSC: 35Q86 76B15 76B45 86A05 35Q35 35B32 PDF BibTeX XML Cite \textit{C. I. Martin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 96, 1--17 (2014; Zbl 1283.35146) Full Text: DOI
Khusnutdinova, K. R.; Klein, C.; Matveev, V. B.; Smirnov, A. O. On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation. (English) Zbl 1319.37044 Chaos 23, No. 1, 013126, 13 p. (2013). MSC: 37K10 35Q35 76B15 35J30 35C05 PDF BibTeX XML Cite \textit{K. R. Khusnutdinova} et al., Chaos 23, No. 1, 013126, 13 p. (2013; Zbl 1319.37044) Full Text: DOI
Abd-el-Malek, Mina B.; Badran, Nagwa A.; Hassan, Hossam S.; Abbas, Heba H. New solutions for solving problem of particle trajectories in linear deep-water waves via Lie-group method. (English) Zbl 1312.76008 Appl. Math. Comput. 219, No. 24, 11365-11375 (2013). MSC: 76B15 35A30 35Q31 76M60 PDF BibTeX XML Cite \textit{M. B. Abd-el-Malek} et al., Appl. Math. Comput. 219, No. 24, 11365--11375 (2013; Zbl 1312.76008) Full Text: DOI
Luz, Ana Maria; Nachbin, André Wave packet defocusing due to a highly disordered bathymetry. (English) Zbl 1305.76019 Stud. Appl. Math. 130, No. 4, 393-416 (2013). MSC: 76B15 PDF BibTeX XML Cite \textit{A. M. Luz} and \textit{A. Nachbin}, Stud. Appl. Math. 130, No. 4, 393--416 (2013; Zbl 1305.76019) Full Text: DOI
Vitanov, Nikolay K.; Dimitrova, Zlatinka I.; Kantz, Holger Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation. (English) Zbl 1292.35071 Appl. Math. Comput. 219, No. 14, 7480-7492 (2013). MSC: 35C05 35Q53 76B15 35C07 PDF BibTeX XML Cite \textit{N. K. Vitanov} et al., Appl. Math. Comput. 219, No. 14, 7480--7492 (2013; Zbl 1292.35071) Full Text: DOI
Schneider, Wilhelm Solitary waves in turbulent open-channel flow. (English) Zbl 1287.76090 J. Fluid Mech. 726, 137-159 (2013). MSC: 76D33 76M45 35Q51 35Q53 PDF BibTeX XML Cite \textit{W. Schneider}, J. Fluid Mech. 726, 137--159 (2013; Zbl 1287.76090) Full Text: DOI
Alam, Mohammad-Reza Dromions of flexural-gravity waves. (English) Zbl 1284.76062 J. Fluid Mech. 719, 1-13 (2013). MSC: 76B15 74F10 86A40 86A05 PDF BibTeX XML Cite \textit{M.-R. Alam}, J. Fluid Mech. 719, 1--13 (2013; Zbl 1284.76062) Full Text: DOI
Matioc, Anca-Voichita Exact geophysical waves in stratified fluids. (English) Zbl 1292.76018 Appl. Anal. 92, No. 11, 2254-2261 (2013). MSC: 76B15 74G05 76B70 37N10 PDF BibTeX XML Cite \textit{A.-V. Matioc}, Appl. Anal. 92, No. 11, 2254--2261 (2013; Zbl 1292.76018) Full Text: DOI
Henry, David Steady periodic waves bifurcating for fixed-depth rotational flows. (English) Zbl 1275.35023 Q. Appl. Math. 71, No. 3, 455-487 (2013). MSC: 35B32 35Q31 35J25 35R35 35B10 PDF BibTeX XML Cite \textit{D. Henry}, Q. Appl. Math. 71, No. 3, 455--487 (2013; Zbl 1275.35023) Full Text: DOI
Martin, Jussi; Taskinen, Jari Linear water-wave problem in a pond with a shallow beach. (English) Zbl 1273.76063 Appl. Anal. 92, No. 10, 2229-2240 (2013). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{J. Martin} and \textit{J. Taskinen}, Appl. Anal. 92, No. 10, 2229--2240 (2013; Zbl 1273.76063) Full Text: DOI
Ionescu-Kruse, Delia Variational derivation of two-component Camassa-Holm shallow water system. (English) Zbl 1291.35288 Appl. Anal. 92, No. 6, 1241-1253 (2013). MSC: 35Q53 76B15 70G75 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, Appl. Anal. 92, No. 6, 1241--1253 (2013; Zbl 1291.35288) Full Text: DOI arXiv
Henry, David Large amplitude steady periodic waves for fixed-depth rotational flows. (English) Zbl 1292.35217 Commun. Partial Differ. Equations 38, No. 4-6, 1015-1037 (2013). MSC: 35Q31 35J25 PDF BibTeX XML Cite \textit{D. Henry}, Commun. Partial Differ. Equations 38, No. 4--6, 1015--1037 (2013; Zbl 1292.35217) Full Text: DOI
Martin, Calin Iulian Local bifurcation for steady periodic capillary water waves with constant vorticity. (English) Zbl 1411.76014 J. Math. Fluid Mech. 15, No. 1, 155-170 (2013). MSC: 76B15 76B45 35Q35 PDF BibTeX XML Cite \textit{C. I. Martin}, J. Math. Fluid Mech. 15, No. 1, 155--170 (2013; Zbl 1411.76014) Full Text: DOI
Ionescu-Kruse, Delia On the particle paths and the stagnation points in small-amplitude deep-water waves. (English) Zbl 1405.76006 J. Math. Fluid Mech. 15, No. 1, 41-54 (2013). MSC: 76B15 PDF BibTeX XML Cite \textit{D. Ionescu-Kruse}, J. Math. Fluid Mech. 15, No. 1, 41--54 (2013; Zbl 1405.76006) Full Text: DOI arXiv
Constantin, Adrian Mean velocities in a Stokes wave. (English) Zbl 1320.76016 Arch. Ration. Mech. Anal. 207, No. 3, 907-917 (2013). MSC: 76B03 35C07 35Q35 PDF BibTeX XML Cite \textit{A. Constantin}, Arch. Ration. Mech. Anal. 207, No. 3, 907--917 (2013; Zbl 1320.76016) Full Text: DOI
Henry, David On free surfaces in hydrostatic flows. (English) Zbl 1296.35131 Appl. Anal. 92, No. 2, 238-245 (2013). Reviewer: Thomas Hagen (Memphis) MSC: 35Q31 35Q35 35R35 35C07 PDF BibTeX XML Cite \textit{D. Henry}, Appl. Anal. 92, No. 2, 238--245 (2013; Zbl 1296.35131) Full Text: DOI