×

zbMATH — the first resource for mathematics

Wick type deformation quantization of Fedosov manifolds. (English) Zbl 0969.81635
Summary: A coordinate-free definition for Wick-type symbols is given for symplectic manifolds by means of the Fedosov procedure. The geometry of the symplectic manifolds admitting the symbol construction is explored and a certain analogue of the Newlander-Nirenberg theorem is presented. The 2-form is explicitly identified which cohomological class coincides with the Fedosov class of the Wick-type star-product. For the Kähler manifolds this class is shown to be proportional to the first Chern class of a complex manifold. We also show that the symbol construction admits canonical superextension, which can be thought of as the Wick-type deformation of the exterior algebra of differential forms on the base (even) manifold. Possible applications of the deformed superalgebra to the noncommutative field theory and strings are discussed.

MSC:
81T70 Quantization in field theory; cohomological methods
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Berezin, F.A.; Berezin, F.A., Izv. akad. nauk, Commun. math. phys., 40, 153, (1975)
[2] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D.; Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Ann. phys. (NY), Ann. phys. (NY), 110, 111, (1978)
[3] Sternheimer, D., in: Proc. of the 1998 Lodz Conference Particles, Fields and Gravitation
[4] DeWilde, M.; Lecomte, P.B.A., Lett. math. phys., 7, 487, (1983)
[5] Nest, R.; Tsygan, B., Adv. math., 113, 151, (1995)
[6] Bertelson, M.; Cahen, M.; Gutt, S., Class. quant. grav., 14, A93-A107, (1997)
[7] Deligne, P., Selecta Mathematica, new series, 1, 667, (1995)
[8] DeWilde, M.; Lecomte, P.B.A., Note di matematica (suppl.), 10, 1, 205, (1992)
[9] Fedosov, B.V., J. diff. geom., 40, 213, (1994)
[10] Xu, P., Commun. math. phys., 197, 167, (1998)
[11] Grigoriev, M.A.; Lyakhovich, S.L., Fedosov deformation quantization as a BRST theory, Commun. math. phys., 218, 437, (2001) · Zbl 1024.53055
[12] Molchanov, V.F., Func. anal. appl., 14, 2, 73, (1980)
[13] Cahen, M.; Gutt, S.; Rawnsley, J., Trans. am. math. soc., 337, 73, (1993)
[14] Bordemann, M.; Waldmann, S., Lett. math. phys., 41, 243, (1997)
[15] Karabegov, A.V., Commun. math. phys., 180, 745, (1996)
[16] Karabegov, A.V., Pseudo-Kähler quantization on flag manifolds · Zbl 0932.37071
[17] Karabegov, A.V., On Fedosov’s approach to deformation quantization with separation of variables · Zbl 0988.53042
[18] Moreno, C., Lett. math. phys., 11, 361, (1986)
[19] Pflaum, M.J., New York J. math., 4, 97, (1998)
[20] Reshetikhin, N.; Takhtajan, L., Deformation quantization of Kähler manifolds · Zbl 1003.53061
[21] Bordemann, M.; Meinrenken, E.; Schlichenmaier, M., Commun. math. phys., 165, 281-296, (1994)
[22] Berezin, F.A., Izv. akad. nauk, 37, 1134, (1972)
[23] Woodhouse, N.J.M., Geometric quantization, (1992), Oxford University Press Oxford · Zbl 0747.58004
[24] Fedosov, B.V., Deformation quantization and index theory, (1996), Akademia Verlag Berlin · Zbl 0867.58061
[25] Cahen, M.; Flato, M.; Gutt, S.; Sternheimer, D., J. geom. phys., 2, 35, (1985)
[26] Gelfand, I.; Retakh, V.; Shubin, M., Fedosov manifolds · Zbl 0945.53047
[27] Bordemann, M., On the deformation quantization of super-Poisson brackets · Zbl 1004.53067
[28] Newlander, A.; Nirenberg, L.; Newlander, A.; Nirenberg, L., Ann. math., Ann. math., 65, 391, (1957)
[29] Kontsevich, M., Deformation quantization of Poisson manifolds · Zbl 1058.53065
[30] Bonneau, P., Fedosov star-products and 1-differiable deformations
[31] Chern, S.S., Complex manifolds without potential theory, (1979), Universitext Springer Berlin
[32] Kodaira, K.; Hirzebruch, F., J. math. pures et app., 36, 201, (1957)
[33] Rothstein, M., The structure of supersymplectic supermanifolds, (), 331 · Zbl 0747.58010
[34] Gozzi, E.; Reuter, M.; Gozzi, E.; Reuter, M., Mod. phys. lett. A, Int. J. mod. phys. A, 9, 2191, (1994) · Zbl 0985.81770
[35] Reuter, M., Int. J. mod. phys. A, 11, 1253, (1996)
[36] Connes, A., Noncommutative geometry, (1994), Academic Press · Zbl 0681.55004
[37] Connes, A.; Douglas, M.R.; Schwarz, A., Jhep, 9802, 003, (1998)
[38] Seiberg, N.; Witten, E., Jhep, 9909, 032, (1999)
[39] Connes, A.; Rieffel, M., Yang – mills for noncommutative two-tori, Contemp. math. oper. alg. math. phys., 62, 237, (1987), in: Operator Algebras and Mathematical Physics, Iowa City, Iowa, 1985
[40] Garcia-Compean, H., Nucl. phys. B, 541, 651, (1999)
[41] Asakawa, T.; Kishimoto, I., Nucl. phys. B, 591, 611, (2000)
[42] Buchbinder, I.L.; Fradkin, E.S.; Lyakhovich, S.L.; Pershin, V.D., Int. J. mod. phys. A, 6, 1211, (1991)
[43] Kamenshchik, A.Yu.; Lyakhovich, S.L., Nucl. phys. B, 495, 309, (1997)
[44] Karataeva, I.Yu.; Lyakhovich, S.L., Teor. mat. fiz., 105, 55, (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.