zbMATH — the first resource for mathematics

Modelling over- and underdispersed frequencies of successful ink transmissions onto paper. (English) Zbl 07265819
Summary: This work focuses on the statistical modelling of successful or failed ink transmission during the printing of packaging paper. The main aim is to explain the probability of successful ink transmission with the help of a regression model. But many of the applied logistic regression models show that the variabilities of various samples from the printability data set range from much smaller to much larger values than the variability assumed in a binomial model. Hence, the main part of this paper concentrates on the discussion of distribution families that are capable of handling such a wide spectrum of different variations of frequency data.
62 Statistics
Full Text: DOI
[1] Aitkin, M., Francis, B., Hinde, J. and Darnell, R. 2009. Statistical Modelling in R, Oxford: Oxford University Press. · Zbl 1211.62003
[2] Altham, P. M.E. 1978. Two generalizations of the binomial distribution. J. R. Stat. Soc. Ser. C, 27: 162-197. · Zbl 0438.62008
[3] Barros, G. G. 2006. Influence of substrate topography on ink distribution in flexography, Dissertation: Karlstad University Studies.
[4] Barros, G. G. and Johansson, P.-Å. 2006. Prediction of uncovered area occurrence in flexography based on topography – a feasibility study. Nordic Pulp Paper Res. J., 21: 172-179. (doi:10.3183/NPPRJ-2006-21-02-p172-179)
[5] Böhning, D., Baksh, M. F., Lerdsuwansri, R. and Gallagher, J. 2011. Use of the ratio plot in capture-recapture estimation. J. Comput. Graph. Statist., accepted for publication. doi: 10.1080/10618600.2011.647174. · Zbl 1247.62286
[6] Booth, J., Casella, G., Friedl, H. and Hobert, J. 2003. Negative binomial loglinear mixed models. Stat. Model., 3: 179-191. (doi:10.1191/1471082X03st058oa) · Zbl 1070.62058
[7] Cox, F. E.G. 1993. Modern Parasitology: A Textbook of Parasitology, Edited by: Cox, F. E.G. Oxford: Blackwell Science.
[8] Donoser, M., Bischof, H. and Wiltsche, M. Color blob segmentation by MSER analysis. October, Atlanta, Georgia, USA. Proceedings of the International Conference on Image Processing, ICIP 2006, pp.8-11. IEEE. Piscataway, NJ, 2006. Available at http://dblp.uni-trier.de.
[9] Efron, B. 1986. Double exponential families and their use in generalized linear regression. J. Amer. Statist. Assoc., 81: 709-721. (doi:10.1080/01621459.1986.10478327) · Zbl 0611.62072
[10] Feirer, V., Hirn, U., Friedl, H. and Bauer, W. 2010. “Predicting local ink coverage in flexo printed packaging paper”. Montreal: Progress in Paper Physics Seminar.
[11] Feirer, V., Hirn, U., Friedl, H. and Bauer, W. 2011. “A statistical approach to the modelling of ink transmission on flexo-printedsack paper, in Advances in Printing and Media Technology”. Edited by: Enlund, N. and Lovreček, M. Vol. XXXVIII, 93-102. Darmstadt, , Germany: IARIGAI.
[12] Hardy, I. C.W. 2002. “Sex Ratios. Concepts and Research Methods”. Edited by: Hardy, I. C.W. Cambridge: Cambridge University Press.
[13] Hilbe, J. M. 2011. “Negative Binomial Regression”. Cambridge: Cambridge University Press. · Zbl 1269.62063
[14] King, G. 1989. Variance specification in event count models: From restrictive assumptions to a generalized estimator. Amer. J. Polit. Sci., 33: 762-784. (doi:10.2307/2111071)
[15] Krackow, S. and Tkadlec, E. 2001. Analysis of brood sex ratios: Implications of offspring clustering. Behav. Ecol. Sociobiol., 50: 293-301. (doi:10.1007/s002650100366)
[16] Lee, Y. and Nelder, J. A. 2000. The relationship between double-exponential families and extended quasi-likelihood families, with application to modelling Geissler’s human sex ratio data. Appl. Stat., 49: 413-419.
[17] Lindsey, J. K. and Altham, P. M.E. 1998. Analysis of the human sex ratio by using overdispersion models. J. R. Stat. Soc. Ser. C, 47: 149-157. (doi:10.1111/1467-9876.00103)
[18] Lindsey, J. K. and Laurent, C. 1996. Estimating the proportion of lymphoblastoid cells affected by exposure to ethylene oxide through micronuclei counts. J. R. Stat. Soc. Ser. D, 45: 223-229.
[19] Seeber, G. U.H. 1997. Overdispersed exponential regression models. Comput. Statist., 12: 209-218. · Zbl 0936.62084
[20] Wedderburn, R. W.M. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61: 439-447. · Zbl 0292.62050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.