Vijayalakshmi, Palanisamy; Jiang, Zhiheng; Wang, Xiong Lagrangian formulation of Lorenz and Chen systems. (English) Zbl 07331771 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150055, 7 p. (2021). MSC: 37K06 37K58 PDF BibTeX XML Cite \textit{P. Vijayalakshmi} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150055, 7 p. (2021; Zbl 07331771) Full Text: DOI
Liu, Linjie; Chen, Xiaojie Evolutionary dynamics of cooperation in a corrupt society with anti-corruption control. (English) Zbl 07331751 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150039, 25 p. (2021). MSC: 91D99 91B18 91A80 PDF BibTeX XML Cite \textit{L. Liu} and \textit{X. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150039, 25 p. (2021; Zbl 07331751) Full Text: DOI
Zhang, Fuchen; Zhou, Ping; Chen, Xiusu; Chen, Rui; Mu, Chunlai Chaotic dynamics in generalized Rabinovich system. (English) Zbl 07331748 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150036, 12 p. (2021). MSC: 93D 93C 34C PDF BibTeX XML Cite \textit{F. Zhang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150036, 12 p. (2021; Zbl 07331748) Full Text: DOI
Hu, Jianbing; Qi, Guoyuan; Wang, Ze; Chen, Guanrong Rare energy-conservative attractors on global invariant hypersurfaces and their multistability. (English) Zbl 07331743 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2130007, 18 p. (2021). MSC: 34A34 34C28 34C45 37J39 34D45 PDF BibTeX XML Cite \textit{J. Hu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2130007, 18 p. (2021; Zbl 07331743) Full Text: DOI
Yin, Chuntao Chaos detection of the Chen system with Caputo-Hadamard fractional derivative. (English) Zbl 07321547 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021). MSC: 34A34 34A08 34C28 34D08 37D45 PDF BibTeX XML Cite \textit{C. Yin}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150016, 14 p. (2021; Zbl 07321547) Full Text: DOI
Lai, Qiang A unified chaotic system with various coexisting attractors. (English) Zbl 07321544 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150013, 11 p. (2021). MSC: 37D 37M PDF BibTeX XML Cite \textit{Q. Lai}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150013, 11 p. (2021; Zbl 07321544) Full Text: DOI
Jafari, Ali; Hussain, Iqtadar; Nazarimehr, Fahimeh; Golpayegani, Seyed Mohammad Reza Hashemi; Jafari, Sajad A simple guide for plotting a proper bifurcation diagram. (English) Zbl 07321542 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150011, 11 p. (2021). MSC: 37N PDF BibTeX XML Cite \textit{A. Jafari} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150011, 11 p. (2021; Zbl 07321542) Full Text: DOI
Zhou, Ming-Yang; Xu, Rong-Qin; Li, Xiao-Yu; Liao, Hao Identifying influential nodes to enlarge the coupling range of pinning controllability. (English) Zbl 07329378 J. Stat. Mech. Theory Exp. 2020, No. 9, Article ID 093401, 16 p. (2020). MSC: 82 PDF BibTeX XML Cite \textit{M.-Y. Zhou} et al., J. Stat. Mech. Theory Exp. 2020, No. 9, Article ID 093401, 16 p. (2020; Zbl 07329378) Full Text: DOI
Sene, Ndolane; Ndiaye, Ameth On class of fractional-order chaotic or hyperchaotic systems in the context of the Caputo fractional-order derivative. (English) Zbl 07307412 J. Math. 2020, Article ID 8815377, 15 p. (2020). MSC: 34 37 PDF BibTeX XML Cite \textit{N. Sene} and \textit{A. Ndiaye}, J. Math. 2020, Article ID 8815377, 15 p. (2020; Zbl 07307412) Full Text: DOI
Lu, Yusong; Luo, Ricai; Zou, Yongfu Morphological analysis for three-dimensional chaotic delay neural networks. (English) Zbl 07307399 J. Math. 2020, Article ID 4302505, 6 p. (2020). MSC: 68 34 PDF BibTeX XML Cite \textit{Y. Lu} et al., J. Math. 2020, Article ID 4302505, 6 p. (2020; Zbl 07307399) Full Text: DOI
Gu, Shuangquan; Du, Baoxiang; Wan, Yujie A new four-dimensional non-Hamiltonian conservative hyperchaotic system. (English) Zbl 07306775 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050242, 23 p. (2020). MSC: 37D45 34C28 37M25 70K55 PDF BibTeX XML Cite \textit{S. Gu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050242, 23 p. (2020; Zbl 07306775) Full Text: DOI
Ma, Junhai; Li, Yaping; Wang, Zongxian Analysis of pricing and service effort in dual-channel supply chains with showrooming effect. (English) Zbl 07306774 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050241, 21 p. (2020). MSC: 90B05 91A25 91B24 PDF BibTeX XML Cite \textit{J. Ma} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050241, 21 p. (2020; Zbl 07306774) Full Text: DOI
Hirata, Yoshito; Aihara, Kazuyuki Deep learning for nonlinear time series: examples for inferring slow driving forces. (English) Zbl 07306754 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050226, 13 p. (2020). MSC: 37M10 68T05 68T07 PDF BibTeX XML Cite \textit{Y. Hirata} and \textit{K. Aihara}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050226, 13 p. (2020; Zbl 07306754) Full Text: DOI
Pena Ramirez, Jonatan; Alvarez, Joaquin Mixed synchronization in unidirectionally coupled chaotic oscillators. (English) Zbl 1454.93265 Lacarbonara, Walter (ed.) et al., Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume II. Cham: Springer. 315-323 (2020). MSC: 93D99 93C15 34H10 PDF BibTeX XML Cite \textit{J. Pena Ramirez} and \textit{J. Alvarez}, in: Nonlinear dynamics and control. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume II. Cham: Springer. 315--323 (2020; Zbl 1454.93265) Full Text: DOI
Gonzalez, Christopher E.; Lainscsek, Claudia; Sejnowski, Terrence J.; Letellier, Christophe Assessing observability of chaotic systems using delay differential analysis. (English) Zbl 1456.37090 Chaos 30, No. 10, 103113, 11 p. (2020). MSC: 37M10 37M05 34K23 PDF BibTeX XML Cite \textit{C. E. Gonzalez} et al., Chaos 30, No. 10, 103113, 11 p. (2020; Zbl 1456.37090) Full Text: DOI
Lu, Kai; Xu, Wenjing; Yang, Qigui Chaos generated by a class of 3D three-zone piecewise affine systems with coexisting singular cycles. (English) Zbl 07281773 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050209, 17 p. (2020). MSC: 34A34 34A36 34C28 34C37 PDF BibTeX XML Cite \textit{K. Lu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050209, 17 p. (2020; Zbl 07281773) Full Text: DOI
Lai, Qiang; Wan, Zhiqiang; Kamdem Kuate, Paul Didier; Fotsin, Hilaire Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. (English) Zbl 07265384 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105341, 16 p. (2020). MSC: 94C05 34C28 PDF BibTeX XML Cite \textit{Q. Lai} et al., Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105341, 16 p. (2020; Zbl 07265384) Full Text: DOI
Wei, Yifeng; Qing, Xia; Chengrong, Xie; Xu, Yuhua Fixed-time synchronization of the new single-parameter chaotic system. (English) Zbl 1445.37030 Complexity 2020, Article ID 1067863, 8 p. (2020). MSC: 37D45 34C28 34D45 34H10 34D06 PDF BibTeX XML Cite \textit{Y. Wei} et al., Complexity 2020, Article ID 1067863, 8 p. (2020; Zbl 1445.37030) Full Text: DOI
Peng, Xuenan; Zeng, Yicheng A simple method for generating mirror symmetry composite multiscroll chaotic attractors. (English) Zbl 1452.37044 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050220, 14 p. (2020). MSC: 37D45 94C05 37C70 PDF BibTeX XML Cite \textit{X. Peng} and \textit{Y. Zeng}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050220, 14 p. (2020; Zbl 1452.37044) Full Text: DOI
Ray, Arnob; Ghosh, Dibakar Another new chaotic system: bifurcation and chaos control. (English) Zbl 1452.37045 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050161, 11 p. (2020). MSC: 37D45 37G35 34H10 PDF BibTeX XML Cite \textit{A. Ray} and \textit{D. Ghosh}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050161, 11 p. (2020; Zbl 1452.37045) Full Text: DOI
Meddour, Lotfi; Zeraoulia, Elhadj About the three-dimensional quadratic autonomous system with two quadratic terms equivalent to the Lorenz system. (English) Zbl 1448.93136 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133-143 (2020). MSC: 93C15 93C10 34C28 34C41 PDF BibTeX XML Cite \textit{L. Meddour} and \textit{E. Zeraoulia}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 133--143 (2020; Zbl 1448.93136) Full Text: Link
Yang, Ting Dynamical analysis on a finance system with nonconstant elasticity of demand. (English) Zbl 1451.37117 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050148, 13 p. (2020). Reviewer: Gerasimos Soldatos (Thessaloniki) MSC: 37N40 91B42 PDF BibTeX XML Cite \textit{T. Yang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050148, 13 p. (2020; Zbl 1451.37117) Full Text: DOI
Yu, Fei; Qian, Shuai; Chen, Xi; Huang, Yuanyuan; Liu, Li; Shi, Changqiong; Cai, Shuo; Song, Yun; Wang, Chunhua A new 4D four-wing memristive hyperchaotic system: dynamical analysis, electronic circuit design, shape synchronization and secure communication. (English) Zbl 1450.37094 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050147, 20 p. (2020). MSC: 37N35 94C05 PDF BibTeX XML Cite \textit{F. Yu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050147, 20 p. (2020; Zbl 1450.37094) Full Text: DOI
Gong, Lihua; Wu, Rouqing; Zhou, Nanrun A new 4D chaotic system with coexisting hidden chaotic attractors. (English) Zbl 1451.37115 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050142, 14 p. (2020). MSC: 37N35 37D45 94C05 PDF BibTeX XML Cite \textit{L. Gong} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050142, 14 p. (2020; Zbl 1451.37115) Full Text: DOI
Haluszczynski, Alexander; Aumeier, Jonas; Herteux, Joschka; Räth, Christoph Reducing network size and improving prediction stability of reservoir computing. (English) Zbl 1440.37076 Chaos 30, No. 6, 063136, 10 p. (2020). MSC: 37M05 PDF BibTeX XML Cite \textit{A. Haluszczynski} et al., Chaos 30, No. 6, 063136, 10 p. (2020; Zbl 1440.37076) Full Text: DOI
Leonov, G. A.; Mokaev, R. N.; Kuznetsov, N. V.; Mokaev, T. N. Homoclinic bifurcations and chaos in the fishing principle for the Lorenz-like systems. (English) Zbl 1450.34027 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050124, 20 p. (2020). MSC: 34C23 34C28 34A34 34C37 37M20 PDF BibTeX XML Cite \textit{G. A. Leonov} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050124, 20 p. (2020; Zbl 1450.34027) Full Text: DOI
Messias, Marcelo; Silva, Rafael Paulino Determination of nonchaotic behavior for some classes of polynomial jerk equations. (English) Zbl 1452.34023 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050117, 12 p. (2020). Reviewer: Eduard Musafirov (Grodno) MSC: 34A34 34A05 34C28 34C45 PDF BibTeX XML Cite \textit{M. Messias} and \textit{R. P. Silva}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050117, 12 p. (2020; Zbl 1452.34023) Full Text: DOI
Chang, Hui; Li, Yuxia; Chen, Guanrong; Yuan, Fang Extreme multistability and complex dynamics of a memristor-based chaotic system. (English) Zbl 1448.34097 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2030019, 19 p. (2020). MSC: 34C60 94C60 34C28 34C05 34D20 34C23 37D45 PDF BibTeX XML Cite \textit{H. Chang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2030019, 19 p. (2020; Zbl 1448.34097) Full Text: DOI
Zhang, Sen; Wang, Xiaoping; Zeng, Zhigang A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractors and its hardware implementation. (English) Zbl 1437.34064 Chaos 30, No. 5, 053129, 13 p. (2020). MSC: 34C60 34C28 82D45 PDF BibTeX XML Cite \textit{S. Zhang} et al., Chaos 30, No. 5, 053129, 13 p. (2020; Zbl 1437.34064) Full Text: DOI
Marwan, Muhammad; Mehboob, Memoona; Ahmad, Salman; Aqeel, Muhammad Hopf bifurcation of forced Chen system and its stability via adaptive control with arbitrary parameters. (English) Zbl 1446.37098 Soft Comput. 24, No. 6, 4333-4341 (2020). MSC: 37N35 37D45 93C40 70K50 70K55 PDF BibTeX XML Cite \textit{M. Marwan} et al., Soft Comput. 24, No. 6, 4333--4341 (2020; Zbl 1446.37098) Full Text: DOI
Yang, Ting Multistability and hidden attractors in a three-dimensional chaotic system. (English) Zbl 1446.34026 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2050087, 17 p. (2020). MSC: 34A34 34C28 37D45 34C05 34C23 PDF BibTeX XML Cite \textit{T. Yang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2050087, 17 p. (2020; Zbl 1446.34026) Full Text: DOI
Deng, Quanli; Wang, Chunhua; Yang, Linmao Four-wing hidden attractors with one stable equilibrium point. (English) Zbl 1446.34023 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2050086, 16 p. (2020). MSC: 34A34 34D45 34C05 34D05 37D45 34D08 34C23 94C60 PDF BibTeX XML Cite \textit{Q. Deng} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2050086, 16 p. (2020; Zbl 1446.34023) Full Text: DOI
Odibat, Zaid; Baleanu, Dumitru Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. (English) Zbl 1453.65160 Appl. Numer. Math. 156, 94-105 (2020). MSC: 65L05 34A08 65L06 PDF BibTeX XML Cite \textit{Z. Odibat} and \textit{D. Baleanu}, Appl. Numer. Math. 156, 94--105 (2020; Zbl 1453.65160) Full Text: DOI
Feng, Chunsheng; Li, Lijie; Liu, Yongjian; Wei, Zhouchao Global dynamics of the chaotic disk dynamo system driven by noise. (English) Zbl 1441.37095 Complexity 2020, Article ID 8375324, 9 p. (2020). MSC: 37N05 37D45 70K20 70K55 PDF BibTeX XML Cite \textit{C. Feng} et al., Complexity 2020, Article ID 8375324, 9 p. (2020; Zbl 1441.37095) Full Text: DOI
Lai, Qiang; Kamdem Kuate, Paul Didier; Pei, Huiqin; Fotsin, Hilaire Infinitely many coexisting attractors in no-equilibrium chaotic system. (English) Zbl 1441.37044 Complexity 2020, Article ID 8175639, 17 p. (2020). MSC: 37D45 37C70 34D06 PDF BibTeX XML Cite \textit{Q. Lai} et al., Complexity 2020, Article ID 8175639, 17 p. (2020; Zbl 1441.37044) Full Text: DOI
Zhang, Xi; Wu, Ran-chao Modified projective synchronization of fractional-order chaotic systems with different dimensions. (English) Zbl 1436.34056 Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 527-538 (2020). MSC: 34D06 34A08 34C28 34H05 44A10 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{R.-c. Wu}, Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 527--538 (2020; Zbl 1436.34056) Full Text: DOI
Ren, Hai-Peng; Zhao, Chao-Feng; Grebogi, Celso One-way hash function based on delay-induced hyperchaos. (English) Zbl 1455.94190 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050020, 14 p. (2020). MSC: 94A60 37D45 PDF BibTeX XML Cite \textit{H.-P. Ren} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 2, Article ID 2050020, 14 p. (2020; Zbl 1455.94190) Full Text: DOI
Zhang, Yunong; Yang, Min; Qiu, Binbin; Li, Jian; Zhu, Mingjie From mathematical equivalence such as Ma equivalence to generalized Zhang equivalency including gradient equivalency. (English) Zbl 1436.93095 Theor. Comput. Sci. 817, 44-54 (2020). MSC: 93C85 93C15 34H10 93-10 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Theor. Comput. Sci. 817, 44--54 (2020; Zbl 1436.93095) Full Text: DOI
Nazarimehr, Fahimeh; Panahi, Shirin; Jalili, Mahdi; Perc, Matjaž; Jafari, Sajad; Ferčec, Brigita Multivariable coupling and synchronization in complex networks. (English) Zbl 1433.34073 Appl. Math. Comput. 372, Article ID 124996, 9 p. (2020). MSC: 34D06 34H10 37D45 34C28 PDF BibTeX XML Cite \textit{F. Nazarimehr} et al., Appl. Math. Comput. 372, Article ID 124996, 9 p. (2020; Zbl 1433.34073) Full Text: DOI
Li, Yuzhe; Shi, Dawei; Chen, Tongwen Secure analysis of dynamic networks under pinning attacks against synchronization. (English) Zbl 1430.91027 Automatica 111, Article ID 108576, 8 p. (2020). MSC: 91A65 91A80 93B70 PDF BibTeX XML Cite \textit{Y. Li} et al., Automatica 111, Article ID 108576, 8 p. (2020; Zbl 1430.91027) Full Text: DOI arXiv
Atangana, Abdon; Qureshi, Sania Modeling attractors of chaotic dynamical systems with fractal-fractional operators. (English) Zbl 1448.65268 Chaos Solitons Fractals 123, 320-337 (2019). MSC: 65P20 65L03 34A08 34C28 34D45 PDF BibTeX XML Cite \textit{A. Atangana} and \textit{S. Qureshi}, Chaos Solitons Fractals 123, 320--337 (2019; Zbl 1448.65268) Full Text: DOI
Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N. Stability enhancement by induced synchronization using transient uncoupling in certain coupled chaotic systems. (English) Zbl 1451.37056 Chaos Solitons Fractals 123, 217-228 (2019). MSC: 37D45 93C15 34D06 34H10 PDF BibTeX XML Cite \textit{G. Sivaganesh} et al., Chaos Solitons Fractals 123, 217--228 (2019; Zbl 1451.37056) Full Text: DOI
Lai, Qiang; Xu, Guanghui; Pei, Huiqin Analysis and control of multiple attractors in Sprott B system. (English) Zbl 1451.37053 Chaos Solitons Fractals 123, 192-200 (2019). MSC: 37D45 93C15 34C60 34C28 94C60 34H10 PDF BibTeX XML Cite \textit{Q. Lai} et al., Chaos Solitons Fractals 123, 192--200 (2019; Zbl 1451.37053) Full Text: DOI
Gao, Richie A novel track control for Lorenz system with single state feedback. (English) Zbl 1448.93128 Chaos Solitons Fractals 122, 236-244 (2019). MSC: 93C10 34H10 34C60 93D09 PDF BibTeX XML Cite \textit{R. Gao}, Chaos Solitons Fractals 122, 236--244 (2019; Zbl 1448.93128) Full Text: DOI
Natiq, Hayder; Banerjee, Santo; Misra, A. P.; Said, M. R. M. Degenerating the butterfly attractor in a plasma perturbation model using nonlinear controllers. (English) Zbl 1448.34126 Chaos Solitons Fractals 122, 58-68 (2019). MSC: 34H10 34C60 93C15 34C28 PDF BibTeX XML Cite \textit{H. Natiq} et al., Chaos Solitons Fractals 122, 58--68 (2019; Zbl 1448.34126) Full Text: DOI
Čermák, Jan; Nechvátal, Luděk Stability and chaos in the fractional Chen system. (English) Zbl 1448.34087 Chaos Solitons Fractals 125, 24-33 (2019). MSC: 34C28 34A08 34C60 37G10 37G35 37M05 37D45 PDF BibTeX XML Cite \textit{J. Čermák} and \textit{L. Nechvátal}, Chaos Solitons Fractals 125, 24--33 (2019; Zbl 1448.34087) Full Text: DOI
Ning, Di; Wu, Xiaoqun; Feng, Hui; Chen, Yang; Lu, Junan Inter-layer generalized synchronization of two-layer impulsively-coupled networks. (English) Zbl 07264562 Commun. Nonlinear Sci. Numer. Simul. 79, Article ID 104947, 12 p. (2019). MSC: 91D 82B PDF BibTeX XML Cite \textit{D. Ning} et al., Commun. Nonlinear Sci. Numer. Simul. 79, Article ID 104947, 12 p. (2019; Zbl 07264562) Full Text: DOI
Cang, Shijian; Li, Yue; Zhang, Ruiye; Wang, Zenghui Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. (English) Zbl 1439.34045 Nonlinear Dyn. 95, No. 1, 381-390 (2019). MSC: 34C28 37D45 34D45 PDF BibTeX XML Cite \textit{S. Cang} et al., Nonlinear Dyn. 95, No. 1, 381--390 (2019; Zbl 1439.34045) Full Text: DOI
Cui, Yan; He, Hongjun; Sun, Guan; Lu, Chenhui Analysis and control of fractional order generalized Lorenz chaotic system by using finite time synchronization. (English) Zbl 1446.37097 Adv. Math. Phys. 2019, Article ID 3713789, 12 p. (2019). MSC: 37N35 34A08 34D06 26A33 PDF BibTeX XML Cite \textit{Y. Cui} et al., Adv. Math. Phys. 2019, Article ID 3713789, 12 p. (2019; Zbl 1446.37097) Full Text: DOI
Doungmo Goufo, Emile F. Development and elaboration of a compound structure of chaotic attractors with Atangana-Baleanu operator. (English) Zbl 1437.37047 Gómez, José Francisco (ed.) et al., Fractional derivatives with Mittag-Leffler kernel. Trends and applications in science and engineering. Cham: Springer. Stud. Syst. Decis. Control 194, 159-174 (2019). MSC: 37D45 34A08 34D45 PDF BibTeX XML Cite \textit{E. F. Doungmo Goufo}, Stud. Syst. Decis. Control 194, 159--174 (2019; Zbl 1437.37047) Full Text: DOI
Dong, Enzeng; Yuan, Mingfeng; Du, Shengzhi; Chen, Zengqiang A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. (English) Zbl 07187133 Appl. Math. Modelling 73, 40-71 (2019). MSC: 37 94 PDF BibTeX XML Cite \textit{E. Dong} et al., Appl. Math. Modelling 73, 40--71 (2019; Zbl 07187133) Full Text: DOI
Zheng, Guangchao; Liu, Ling; Liu, Chongxin Hidden coexisting attractors in a fractional-order system without equilibrium: analysis, circuit implementation, and finite-time synchronization. (English) Zbl 1435.34018 Math. Probl. Eng. 2019, Article ID 6908607, 12 p. (2019). MSC: 34A08 34C28 37D45 PDF BibTeX XML Cite \textit{G. Zheng} et al., Math. Probl. Eng. 2019, Article ID 6908607, 12 p. (2019; Zbl 1435.34018) Full Text: DOI
Zhang, Xin; Wang, Chunhua; Yao, Wei; Lin, Hairong Chaotic system with bondorbital attractors. (English) Zbl 1430.37045 Nonlinear Dyn. 97, No. 4, 2159-2174 (2019). MSC: 37D45 37C70 PDF BibTeX XML Cite \textit{X. Zhang} et al., Nonlinear Dyn. 97, No. 4, 2159--2174 (2019; Zbl 1430.37045) Full Text: DOI
Yang, Jiaopeng; Liu, Zhengrong A novel simple hyperchaotic system with two coexisting attractors. (English) Zbl 1434.34024 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950203, 18 p. (2019). MSC: 34A34 34C28 34C23 37D45 34D45 34D08 PDF BibTeX XML Cite \textit{J. Yang} and \textit{Z. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 14, Article ID 1950203, 18 p. (2019; Zbl 1434.34024) Full Text: DOI
Ahmed, Nauman; Wei, Zhouchao; Baleanu, Dumitru; Rafiq, M.; Rehman, M. A. Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system. (English) Zbl 1425.92172 Chaos 29, No. 10, 103101, 11 p. (2019). MSC: 92D30 92C60 35Q92 PDF BibTeX XML Cite \textit{N. Ahmed} et al., Chaos 29, No. 10, 103101, 11 p. (2019; Zbl 1425.92172) Full Text: DOI
Bao, Bocheng; Luo, Jiaoyan; Bao, Han; Chen, Chengjie; Wu, Huagan; Xu, Quan A simple nonautonomous hidden chaotic system with a switchable stable node-focus. (English) Zbl 1435.34021 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950168, 10 p. (2019). MSC: 34A34 34C05 37C60 34C28 34C23 34D45 37D45 PDF BibTeX XML Cite \textit{B. Bao} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950168, 10 p. (2019; Zbl 1435.34021) Full Text: DOI
Yang, Ting; Yang, Qigui A 3D autonomous system with infinitely many chaotic attractors. (English) Zbl 1435.34023 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950166, 19 p. (2019). MSC: 34A34 34C28 34D45 34D08 37D45 PDF BibTeX XML Cite \textit{T. Yang} and \textit{Q. Yang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1950166, 19 p. (2019; Zbl 1435.34023) Full Text: DOI
Rech, Paulo C.; Dhua, Sudarshan; Pati, N. C. Multistability and bubbling route to chaos in a deterministic model for geomagnetic field reversals. (English) Zbl 1435.34054 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1930034, 12 p. (2019). MSC: 34C60 86A25 34D45 34D20 34C28 34C23 37D45 34D08 PDF BibTeX XML Cite \textit{P. C. Rech} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 12, Article ID 1930034, 12 p. (2019; Zbl 1435.34054) Full Text: DOI
García, Isaac A.; Maza, Susanna; Shafer, Douglas S. Center cyclicity of Lorenz, Chen and Lü systems. (English) Zbl 1428.37046 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 362-376 (2019). MSC: 37G15 37G10 34C07 34C23 PDF BibTeX XML Cite \textit{I. A. García} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 362--376 (2019; Zbl 1428.37046) Full Text: DOI
Huang, Qiujian; Liu, Aimin; Liu, Yongjian Jacobi stability analysis of the Chen system. (English) Zbl 1435.34022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950139, 15 p. (2019). MSC: 34A34 34D99 34C14 34C05 34C28 PDF BibTeX XML Cite \textit{Q. Huang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950139, 15 p. (2019; Zbl 1435.34022) Full Text: DOI
Huang, Lan; Wu, Guoqing; Zhang, Zhengdi; Bi, Qinsheng Fast-slow dynamics and bifurcation mechanism in a novel chaotic system. (English) Zbl 1448.34037 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1930028, 17 p. (2019). Reviewer: Eduard Musafirov (Grodno) MSC: 34A34 37C60 34C28 34C23 34E15 34C26 PDF BibTeX XML Cite \textit{L. Huang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1930028, 17 p. (2019; Zbl 1448.34037) Full Text: DOI
Tian, Kun; Ren, Hai-Peng; Grebogi, Celso Existence of chaos in the Chen system with linear time-delay feedback. (English) Zbl 1429.34075 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1950114, 14 p. (2019). MSC: 34K23 34K35 34K10 37D45 PDF BibTeX XML Cite \textit{K. Tian} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1950114, 14 p. (2019; Zbl 1429.34075) Full Text: DOI
Wu, Jiening; Li, Xiang Interlayer impacts to deep-coupling dynamical networks: a snapshot of equilibrium stability. (English) Zbl 1425.34072 Chaos 29, No. 7, 073104, 10 p. (2019). MSC: 34D20 34C05 92B20 PDF BibTeX XML Cite \textit{J. Wu} and \textit{X. Li}, Chaos 29, No. 7, 073104, 10 p. (2019; Zbl 1425.34072) Full Text: DOI
Zhang, Fuchen Analysis of a Lorenz-like chaotic system by Lyapunov functions. (English) Zbl 1420.37024 Complexity 2019, Article ID 7812769, 6 p. (2019). MSC: 37D45 PDF BibTeX XML Cite \textit{F. Zhang}, Complexity 2019, Article ID 7812769, 6 p. (2019; Zbl 1420.37024) Full Text: DOI
Zhou, Xiaofei; Li, Junmei; Wang, Yulan; Zhang, Wei Numerical simulation of a class of hyperchaotic system using barycentric Lagrange interpolation collocation method. (English) Zbl 1420.65075 Complexity 2019, Article ID 1739785, 13 p. (2019). MSC: 65L05 65L06 37M05 PDF BibTeX XML Cite \textit{X. Zhou} et al., Complexity 2019, Article ID 1739785, 13 p. (2019; Zbl 1420.65075) Full Text: DOI
Fan, Chunlei; Ding, Qun; Tse, Chi K. Counteracting the dynamical degradation of digital chaos by applying stochastic jump of chaotic orbits. (English) Zbl 1419.68216 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 8, Article ID 1930023, 13 p. (2019). MSC: 68W20 68W40 94A60 PDF BibTeX XML Cite \textit{C. Fan} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 8, Article ID 1930023, 13 p. (2019; Zbl 1419.68216) Full Text: DOI
Wei, Zhouchao; Li, Yingying; Sang, Bo; Liu, Yongjian; Zhang, Wei Complex dynamical behaviors in a 3D simple chaotic flow with 3D stable or 3D unstable manifolds of a single equilibrium. (English) Zbl 1425.34038 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 7, Article ID 1950095, 14 p. (2019). MSC: 34A34 34C28 37D45 34C23 34C05 PDF BibTeX XML Cite \textit{Z. Wei} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 7, Article ID 1950095, 14 p. (2019; Zbl 1425.34038) Full Text: DOI
Fan, Chunlei; Wang, Chuanfu; Ding, Qun A novel algorithm for detection and localization of periodic phenomena of chaotic binary sequences. (English) Zbl 1419.94020 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 7, Article ID 1950087, 11 p. (2019). MSC: 94A13 37D45 94A55 68W40 PDF BibTeX XML Cite \textit{C. Fan} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 7, Article ID 1950087, 11 p. (2019; Zbl 1419.94020) Full Text: DOI
Chai, Yuan; Zhu, Xiaojing; Cai, Jingjing Combined synchronization among three inconsistent networks. (English) Zbl 1416.93145 Adv. Math. Phys. 2019, Article ID 2085318, 10 p. (2019). MSC: 93D05 93A15 PDF BibTeX XML Cite \textit{Y. Chai} et al., Adv. Math. Phys. 2019, Article ID 2085318, 10 p. (2019; Zbl 1416.93145) Full Text: DOI
Gómez-Aguilar, J. F.; Atangana, Abdon Power and exponentials laws: theory and application. (English) Zbl 1423.26011 J. Comput. Appl. Math. 354, 52-65 (2019). Reviewer: Hakan Adiguzel (Istanbul) MSC: 26A33 44A10 44A35 PDF BibTeX XML Cite \textit{J. F. Gómez-Aguilar} and \textit{A. Atangana}, J. Comput. Appl. Math. 354, 52--65 (2019; Zbl 1423.26011) Full Text: DOI
Yang, Qigui; Qiao, Xinmei Constructing a new 3D chaotic system with any number of equilibria. (English) Zbl 1419.34140 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 5, Article ID 1950060, 23 p. (2019). MSC: 34C28 34A34 34D08 34C05 34D20 37D45 PDF BibTeX XML Cite \textit{Q. Yang} and \textit{X. Qiao}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 5, Article ID 1950060, 23 p. (2019; Zbl 1419.34140) Full Text: DOI
Llibre, Jaume; Makhlouf, Ammar Zero-Hopf periodic orbit of a quadratic system of differential equations obtained from a third-order differential equation. (English) Zbl 1428.37047 Differ. Equ. Dyn. Syst. 27, No. 1-3, 75-82 (2019). Reviewer: Zhanyuan Hou (London) MSC: 37G15 37C27 34C23 34C29 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{A. Makhlouf}, Differ. Equ. Dyn. Syst. 27, No. 1--3, 75--82 (2019; Zbl 1428.37047) Full Text: DOI
Liu, Xu; Song, Yurong; Jiang, Guo-Ping Hierarchical bit-level image encryption based on chaotic map and Feistel network. (English) Zbl 1411.94074 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 2, Article ID 1950016, 14 p. (2019). MSC: 94A60 37D45 PDF BibTeX XML Cite \textit{X. Liu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 2, Article ID 1950016, 14 p. (2019; Zbl 1411.94074) Full Text: DOI
Wang, Xiaoyuan; Min, Xiaotao; Yu, Jun; Shen, Yiran; Wang, Guangyi; Ho, Herbert Ching Iu Realization of a novel logarithmic chaotic system and its characteristic analysis. (English) Zbl 1412.34146 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 2, Article ID 1930004, 12 p. (2019). MSC: 34C28 34A34 34C05 34D20 34D08 34C23 94C05 PDF BibTeX XML Cite \textit{X. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 2, Article ID 1930004, 12 p. (2019; Zbl 1412.34146) Full Text: DOI
Doungmo Goufo, Emile F. Strange attractor existence for non-local operators applied to four-dimensional chaotic systems with two equilibrium points. (English) Zbl 1409.37043 Chaos 29, No. 2, 023117, 11 p. (2019). MSC: 37D45 26A33 PDF BibTeX XML Cite \textit{E. F. Doungmo Goufo}, Chaos 29, No. 2, 023117, 11 p. (2019; Zbl 1409.37043) Full Text: DOI
Xu, Fei; Lai, Yongzeng; Shu, Xiao-Bao Chaos in integer order and fractional order financial systems and their synchronization. (English) Zbl 1442.91098 Chaos Solitons Fractals 117, 125-136 (2018). MSC: 91G15 34H10 34A08 34D06 34D23 34C28 PDF BibTeX XML Cite \textit{F. Xu} et al., Chaos Solitons Fractals 117, 125--136 (2018; Zbl 1442.91098) Full Text: DOI
Pan, Indranil; Das, Saptarshi Evolving chaos: identifying new attractors of the generalised Lorenz family. (English) Zbl 07166738 Appl. Math. Modelling 57, 391-405 (2018). MSC: 68 37 PDF BibTeX XML Cite \textit{I. Pan} and \textit{S. Das}, Appl. Math. Modelling 57, 391--405 (2018; Zbl 07166738) Full Text: DOI
Almatroud, A. Othman; Noorani, M. S. M.; Al-sawalha, M. Mossa Parameters identification and dual synchronization between different chaotic and hyperchaotic systems. (English) Zbl 1427.93102 J. Math. Comput. Sci., JMCS 18, No. 4, 398-410 (2018). MSC: 93C40 93D05 93C15 34H10 93B30 PDF BibTeX XML Cite \textit{A. O. Almatroud} et al., J. Math. Comput. Sci., JMCS 18, No. 4, 398--410 (2018; Zbl 1427.93102) Full Text: DOI
Xu, Yuhua; Zhou, Wuneng; Xie, Chengrong Bounded scaling function projective synchronization of chaotic systems with adaptive finite-time control. (English) Zbl 1426.93154 Circuits Syst. Signal Process. 37, No. 8, 3353-3363 (2018). MSC: 93C40 93C41 93D05 34D06 34H10 PDF BibTeX XML Cite \textit{Y. Xu} et al., Circuits Syst. Signal Process. 37, No. 8, 3353--3363 (2018; Zbl 1426.93154) Full Text: DOI
Pham, Viet-Thanh; Volos, Christos; Kingni, Sifeu Takougang; Kapitaniak, Tomasz; Jafari, Sajad Bistable hidden attractors in a novel chaotic system with hyperbolic sine equilibrium. (English) Zbl 1415.37050 Circuits Syst. Signal Process. 37, No. 3, 1028-1043 (2018). MSC: 37D45 94C05 PDF BibTeX XML Cite \textit{V.-T. Pham} et al., Circuits Syst. Signal Process. 37, No. 3, 1028--1043 (2018; Zbl 1415.37050) Full Text: DOI
Daltzis, Peter; Vaidyanathan, Sundarapandian; Pham, Viet-Thanh; Volos, Christos; Nistazakis, Ektoras; Tombras, George Hyperchaotic attractor in a novel hyperjerk system with two nonlinearities. (English) Zbl 1415.37045 Circuits Syst. Signal Process. 37, No. 2, 613-635 (2018). MSC: 37D45 34D06 PDF BibTeX XML Cite \textit{P. Daltzis} et al., Circuits Syst. Signal Process. 37, No. 2, 613--635 (2018; Zbl 1415.37045) Full Text: DOI
Natiq, Hayder; Banerjee, Santo; He, Shaobo; Said, M. R. M.; Kilicman, Adem Designing an M-dimensional nonlinear model for producing hyperchaos. (English) Zbl 1415.37049 Chaos Solitons Fractals 114, 506-515 (2018). MSC: 37D45 39A33 PDF BibTeX XML Cite \textit{H. Natiq} et al., Chaos Solitons Fractals 114, 506--515 (2018; Zbl 1415.37049) Full Text: DOI
Lai, Qiang; Norouzi, Benyamin; Liu, Feng Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors. (English) Zbl 1415.34079 Chaos Solitons Fractals 114, 230-245 (2018). MSC: 34C28 34D45 94A08 PDF BibTeX XML Cite \textit{Q. Lai} et al., Chaos Solitons Fractals 114, 230--245 (2018; Zbl 1415.34079) Full Text: DOI
Singh, Jay Prakash; Roy, Binoy Krishna Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria. (English) Zbl 1415.34080 Chaos Solitons Fractals 114, 81-91 (2018). MSC: 34C28 34D45 PDF BibTeX XML Cite \textit{J. P. Singh} and \textit{B. K. Roy}, Chaos Solitons Fractals 114, 81--91 (2018; Zbl 1415.34080) Full Text: DOI
Szumiński, Wojciech Integrability analysis of chaotic and hyperchaotic finance systems. (English) Zbl 1412.91240 Nonlinear Dyn. 94, No. 1, 443-459 (2018). MSC: 91G80 37N40 37J30 37D45 PDF BibTeX XML Cite \textit{W. Szumiński}, Nonlinear Dyn. 94, No. 1, 443--459 (2018; Zbl 1412.91240) Full Text: DOI
Liu, Yongjian; Huang, Xiezhen; Zheng, Jincun Chaos and bifurcation in the controlled chaotic system. (English) Zbl 1411.34088 Open Math. 16, 1255-1265 (2018). MSC: 34H20 34C23 34C28 34H10 34C20 34C05 34A34 PDF BibTeX XML Cite \textit{Y. Liu} et al., Open Math. 16, 1255--1265 (2018; Zbl 1411.34088) Full Text: DOI
Wu, Aiguo; Cang, Shijian; Zhang, Ruiye; Wang, Zenghui; Chen, Zengqiang Hyperchaos in a conservative system with nonhyperbolic fixed points. (English) Zbl 1407.37054 Complexity 2018, Article ID 9430637, 8 p. (2018). MSC: 37D45 PDF BibTeX XML Cite \textit{A. Wu} et al., Complexity 2018, Article ID 9430637, 8 p. (2018; Zbl 1407.37054) Full Text: DOI
Zhu, Hegui; Qi, Wentao; Ge, Jiangxia; Liu, Yuelin Analyzing Devaney chaos of a sine-cosine compound function system. (English) Zbl 1410.37043 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 14, Article ID 1850176, 13 p. (2018). MSC: 37D45 37E05 PDF BibTeX XML Cite \textit{H. Zhu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 14, Article ID 1850176, 13 p. (2018; Zbl 1410.37043) Full Text: DOI
Wang, Xiong; Ouannas, Adel; Pham, Viet-Thanh; Abdolmohammadi, Hamid Reza A fractional-order form of a system with stable equilibria and its synchronization. (English) Zbl 1445.34028 Adv. Difference Equ. 2018, Paper No. 20, 13 p. (2018). MSC: 34A08 34D06 34H10 26A33 PDF BibTeX XML Cite \textit{X. Wang} et al., Adv. Difference Equ. 2018, Paper No. 20, 13 p. (2018; Zbl 1445.34028) Full Text: DOI
Jia, Hongyan; Guo, Zhiqiang; Wang, Shanfeng; Chen, Zengqiang Mechanics analysis and hardware implementation of a new 3D chaotic system. (English) Zbl 1406.34042 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 13, Article ID 1850161, 14 p. (2018). MSC: 34A34 34C28 94C05 94C99 PDF BibTeX XML Cite \textit{H. Jia} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 13, Article ID 1850161, 14 p. (2018; Zbl 1406.34042) Full Text: DOI
Zhou, Xinlian; Xu, Yuhua Hybrid synchronization of uncertain generalized Lorenz system by adaptive control. (English) Zbl 1403.93118 J. Control Sci. Eng. 2018, Article ID 5603639, 5 p. (2018). MSC: 93C40 93C41 93C15 34H10 93A10 PDF BibTeX XML Cite \textit{X. Zhou} and \textit{Y. Xu}, J. Control Sci. Eng. 2018, Article ID 5603639, 5 p. (2018; Zbl 1403.93118) Full Text: DOI
Yang, Qigui; Lu, Kai Homoclinic orbits and an invariant chaotic set in a new 4D piecewise affine systems. (English) Zbl 1398.34064 Nonlinear Dyn. 93, No. 4, 2445-2459 (2018). MSC: 34C37 34C28 37C29 37D45 PDF BibTeX XML Cite \textit{Q. Yang} and \textit{K. Lu}, Nonlinear Dyn. 93, No. 4, 2445--2459 (2018; Zbl 1398.34064) Full Text: DOI
Singh, Jay Prakash; Roy, Binoy Krishna A more chaotic and easily hardware implementable new 3-D chaotic system in comparison with 50 reported systems. (English) Zbl 1398.37030 Nonlinear Dyn. 93, No. 3, 1121-1148 (2018). MSC: 37D45 93D30 34C28 34D08 PDF BibTeX XML Cite \textit{J. P. Singh} and \textit{B. K. Roy}, Nonlinear Dyn. 93, No. 3, 1121--1148 (2018; Zbl 1398.37030) Full Text: DOI
Messias, Marcelo; Reinol, Alisson C. On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé-Hoover oscillator. (English) Zbl 1398.70048 Nonlinear Dyn. 92, No. 3, 1287-1297 (2018). MSC: 70K65 70K42 70H08 PDF BibTeX XML Cite \textit{M. Messias} and \textit{A. C. Reinol}, Nonlinear Dyn. 92, No. 3, 1287--1297 (2018; Zbl 1398.70048) Full Text: DOI
Doungmo Goufo, Emile Franc Mathematical analysis of peculiar behavior by chaotic, fractional and strange multiwing attractors. (English) Zbl 1401.34008 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 10, Article ID 1850125, 14 p. (2018). MSC: 34A08 34A34 34C28 37D45 65L05 PDF BibTeX XML Cite \textit{E. F. Doungmo Goufo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 10, Article ID 1850125, 14 p. (2018; Zbl 1401.34008) Full Text: DOI
Mancini, Héctor; Becheikh, Rabei; Vidal, Gerard Control and synchronization of hyperchaotic states in mathematical models of Bènard-Marangoni convective experiments. (English) Zbl 1396.37080 Chaos 28, No. 7, 075519, 11 p. (2018). MSC: 37M05 37D45 PDF BibTeX XML Cite \textit{H. Mancini} et al., Chaos 28, No. 7, 075519, 11 p. (2018; Zbl 1396.37080) Full Text: DOI
Yakubu, Gulibur Dauda Accurate multistep multi-derivative collocation methods applied to chaotic systems. (English) Zbl 1398.65154 J. Mod. Methods Numer. Math. 9, No. 1-2, 1-15 (2018). MSC: 65L04 65L05 65L06 PDF BibTeX XML Cite \textit{G. D. Yakubu}, J. Mod. Methods Numer. Math. 9, No. 1--2, 1--15 (2018; Zbl 1398.65154) Full Text: DOI
Zhang, Fuchen; Yang, Gaoxiang; Zhang, Yong; Liao, Xiaofeng; Zhang, Guangyun Qualitative study of a 4D chaos financial system. (English) Zbl 1398.91699 Complexity 2018, Article ID 3789873, 5 p. (2018). MSC: 91G80 37D45 34D20 34H10 PDF BibTeX XML Cite \textit{F. Zhang} et al., Complexity 2018, Article ID 3789873, 5 p. (2018; Zbl 1398.91699) Full Text: DOI
Wang, Haijun; Li, Xianyi A novel hyperchaotic system with infinitely many heteroclinic orbits coined. (English) Zbl 1392.34053 Chaos Solitons Fractals 106, 5-15 (2018). MSC: 34C37 34C28 37D45 PDF BibTeX XML Cite \textit{H. Wang} and \textit{X. Li}, Chaos Solitons Fractals 106, 5--15 (2018; Zbl 1392.34053) Full Text: DOI
Cang, Shijian; Wu, Aiguo; Zhang, Ruiye; Wang, Zenghui; Chen, Zengqiang Conservative chaos in a class of nonconservative systems: theoretical analysis and numerical demonstrations. (English) Zbl 1395.34019 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 7, Article ID 1850087, 19 p. (2018). MSC: 34A34 34C23 34C05 34C14 34D08 34C28 PDF BibTeX XML Cite \textit{S. Cang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 7, Article ID 1850087, 19 p. (2018; Zbl 1395.34019) Full Text: DOI