zbMATH — the first resource for mathematics

Optimal radiation fractionation for low-grade gliomas: insights from a mathematical model. (English) Zbl 1371.92063
Summary: We study optimal radiotherapy fractionations for low-grade glioma using mathematical models. Both space-independent and space-dependent models are studied. Two different optimization criteria have been developed, the first one accounting for the global effect of the tumor mass on the disease symptoms and the second one related to the delay of the malignant transformation of the tumor.
The models are studied theoretically and numerically using the method of feasible directions. We have searched for optimal distributions of the daily doses \(d_{j}\) in the standard protocol of 30 fractions using both models and the two different optimization criteria. The optimal results found in all cases are minor deviations from the standard protocol and provide only marginal potential gains. Thus, our results support the optimality of current radiation fractionations over the standard 6 week treatment period. This is also in agreement with the observation that minor variations of the fractionation have failed to provide measurable gains in survival or progression free survival, pointing out to a certain optimality of the current approach.

92C50 Medical applications (general)
Full Text: DOI
[1] Bahrami, K.; Kim, M., Optimal control of multiplicative control systems arising from cancer therapy, IEEE Trans. Autom. Control, AC20, 537-542, (1975) · Zbl 0308.92016
[2] Barazzuol, L.; Burnet, N. G.; Jena, R.; Jones, B.; Jefferies, S. J.; Kirkby, N. F., A mathematical model of brain tumour response to radiotherapy and chemotherapy considering radiobiological aspects, J. Theor. Biol., 262, 553-565, (2010)
[3] Badoual, M.; Gerin, C.; Deroulers, C.; Grammaticos, B.; Llitjos, J.-F.; Oppenheim, C.; Varlet, P., Oedema-based model for diffuse low-grade gliomas: application to clinical cases under radiotherapy, Cell Prolif., 47, 4, 369-380, (2014)
[4] Bortfeld, T., IMRT: a review and preview, Phys. Med. Biol., 51, R363-R379, (2006)
[5] Bondiau, P. Y.; Konukoglu, E.; Clatz, O.; Delingette, H.; Frenay, M.; Paquis, P., Biocomputing: numerical simulation of glioblastoma growth and comparison with conventional irradiation margins, Phys. Med., 27, 2, 103-108, (2010)
[6] Capasso, V., Mathematical structures of epidemic systems, Lect. Notes Biomath., 97, 149-190, (1993)
[7] Garcia, D. M.; Fulling, K. H.; Marks, J. E., The value of radiation therapy in addition to surgery for astrocytomas of the adult cerebrum, Cancer, 55, 5, 919-927, (1985)
[8] Gerin, C.; Pallud, J.; Grammaticos, B.; Mandonnet, E.; Deroulers, C.; Varlet, P.; Capelle, L.; Taillandier, L.; Bauchet, L.; Duffau, H.; Badoual, M., Improving the time-machine: estimating date of birth of grade ii gliomas, Cell Prolif., 45, 76-90, (2012)
[9] Hanahan, D.; Weinberg, R. A., The hallmarks of cancer: the next generation, Cell, 144, 646-674, (2011)
[10] Higuchi, Y.; Iwadate, Y.; Yamaura, A., Treatment of low-grade oligodendroglial tumors without radiotherapy, Neurology, 63, 12, 2384-2386, (2004)
[11] Jbabdi, S.; Mandonnet, E.; Duffau, H.; Capelle, L.; Swanson, K. R.; Pelegrini-Issac, M.; Guillevin, R.; Benali, H., Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging, Magn. Reson. Med., 54, 616-624, (2005)
[12] Kirkby, N. F.; Jefferies, S. J.; Jena, R.; Burnett, N. G., A mathematical model of the treatment and survival of patients with high-grade brain tumours, J. Theor. Biol., 245, 112-124, (2007)
[13] Konukoglu, E.; Clatz, O.; Bondiau, P. Y.; Delingette, H.; Ayache, N., Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins, Med. Image Anal., 14, 111-125, (2010)
[14] Loeffler, J. S.; Durante, M., Charged particle therapy? optimization, challenges and future directions, Nat. Rev. Clin. Oncol., 10, 411-424, (2013)
[15] Louis, D. N.; Ohgaki, H.; Wiestler, O. D.; Cavenee, W. K.; Burger, P. C.; Jouvet, A.; Scheithauer, B. W.; Kleihues, P., World health organization classification of tumours of the central nervous system, 33-46, (2007), Renouf Publishing Co. Ltd. Geneva
[16] Lutterbach, J.; Weigel, P.; Guttenberger, R.; Hinkelbein, W., Accelerated hyperfractionated radiotherapy in 149 patients with glioblastoma multiforme, Radiother. Oncol., 53, 49-52, (1999)
[17] Malmstrom, A.; Gronberg, B. H.; Marosi, C.; Stupp, R.; Frappaz, D.; Schultz, H.; Abacioglu, U.; Tavelin, B.; Lhermitte, B.; Hegi, M. E.; Rosell, J.; Henriksson, R., Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the nordic randomised, phase 3 trial, Lancet Oncol., 13, 916-926, (2012)
[18] Martínez-González, A.; Calvo, G. F.; Pérez-Romansanta, L. A.; Pérez-García, V. M., Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications, Bull. Math. Biol., 74, 2875-2896, (2012) · Zbl 1264.92028
[19] Nieder, C.; Andratschke, N.; Wiedenmann, N.; Busch, R.; Grosu, A. L.; Molls, M., Radiotherapy for high-grade gliomas. does altered fractionation improve the outcome?, Strahlenther Onkol., 180, 401-407, (2004)
[20] Olson, J. D.; Riedel, E.; DeAngelis, L. M., Long-term outcome of low-grade oligodendroglioma and mixed glioma, Neurology, 54, 1442-1448, (2000)
[21] Pallud, J.; Taillandier, L.; Capelle, L.; Fontaine, D.; Peyre, M.; Ducray, F.; Duffau, H.; Mandonnet, E., Quantitative morphological MRI follow-up of low-grade glioma: a plead for systematic measurement of growth rates, Neurosurgery, 71, 3, 729-740, (2012)
[22] Pallud, J.; Llitjos, J. F.; Dhermain, F.; Varlet, P.; Dezamis, E.; Devaux, B.; Souillard-Scemama, R.; Sanai, N.; Koziak, M.; Page, P.; Schlienger, M.; Daumas-Duport, C.; Meder, J. F.; Oppenheim, C.; Roux, F. X., Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas, Neuro-Oncology, 14, 4, 496-505, (2012)
[23] Pérez-García, V. M.; Calvo, G. F.; Belmonte-Beitia, J.; Diego, D.; Pérez-Romasanta, L., Bright solitary waves in malignant gliomas, Phys. Rev. E, 84, 021921, (2011)
[24] Pérez-García, V. M.; Bogdanska, M.; Martínez-González, A.; Belmonte-Beitia, J.; Schucht, P.; Pérez-Romasanta, L., Delay effects in the response of low grade gliomas to radiotherapy: a mathematical model and its therapeutical implications, Math. Med. Biol., (2015) · Zbl 1325.92049
[25] Pérez-García, V. M.; Pérez-Romasanta, L. A., Extreme protraction for low grade gliomas: theoretical proof of concept of a novel therapeutical strategy, Math. Med. Biol., (2015)
[26] Pérez-Romasanta, L. A.; Belmonte-Beitia, J.; Martínez-González, A.; Calvo, G. F.; Pérez-García, V. M., Mathematical model predicts response to radiotherapy of grade ii gliomas, Rep. Pract. Oncol. Radiother., 18, S63, (2013)
[27] Pignatti, F.; van den Bent, M.; Curran, Prognostic factors for survival in adult patients with cerebral low-grade glioma, J. Clin. Oncol., 20, 2076-2084, (2002)
[28] Poon, E.; Harris, A. L.; Ashcroft, M., Targeting the hypoxia-inducible factor (HIF) pathway in cancer, Expert Rev. Mol. Med., 11, e26, (2009)
[29] Pouratian, N.; Schiff, D., Management of low-grade glioma, Curr. Neurol. Neurosci. Rep., 10, 3, 224-231, (2010)
[30] Ribba, B.; Kaloshi, G.; Peyre, M.; Ricard, D.; Calvez, V.; Tod, M.; Cajavec-Bernard, B.; Idbaih, A.; Psimaras, D.; Dainese, L.; Pallud, J.; Cartalat-Carel, S.; Delattre, J. Y.; Honnorat, J.; Grenier, E.; Ducray, F., A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy, Clin. Cancer Res., 15, 18, 5071-5080, (2012)
[31] Rockne, R.; Rockhill, J. K.; Mrugala, M.; Spence, A. M.; Kalet, I.; Hendrickson, K.; Lai, A.; Cloughesy, T.; AlvordJr., E. C.; Swanson, K. R., Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach, Phys. Med. Biol., 55, 3271-3285, (2010)
[32] Ruiz, J.; Lesser, G. J., Low-grade gliomas, Curr. Treat. Opt. Oncol., 10, 231-242, (2009)
[33] Semenza, G. L., Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer, 3, 721-732, (2003)
[34] Sun, W.; Yuan, Y.-X., Optimization theory and methods: nonlinear programming, Springer optimization and its applications, Appl. Optim., 98, (2006)
[35] Swanson, K. R.; Bridge, C.; Murray, J. D.; AlvordJr., E. C., Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci., 216, 1-10, (2003)
[36] Swanson, K. R.; Rostomily, R. C.; AlvordJr., E. C., A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle, Br. J. Cancer, 98, 113-119, (2008)
[37] Tarnawski, R.; Fowler, J.; Skladowski, K.; Swierniak, A.; Suwi?ski, R.; Maciejewski, B.; Wygoda, A., How fast is repopulation of tumor cells during the treatment gaps, Int. J. Radiat. Oncol. Biol. Phys., 54, 229-236, (2002)
[38] Tarnawski, R.; Skladowski, K.; Swierniak, A.; Wygoda, A.; Mucha, A., Repopulation of tumor cells during radiotherapy is doubled during treatment gaps, J. Theor. Med., 2, 297-306, (2000) · Zbl 0962.92022
[39] Bent, M. J.V.d.; Afra, D.; de Witte, O.; Hassel, M. B.; Schraub, S.; Hoang-Xuan, K.; Malmström, P. O.; Collette, L.; Piérart, M.; Mirimanoff, R.; Karim, A. B., Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial, Lancet, 366, 9490, 985-990, (2005)
[40] Kogel, A. V.d.; Joiner, M., Basic clinical radiobiology, (2009), Oxford University Press
[41] Wang, C. H.; Rockhill, J. K.; Mrugala, M.; Peacock, D. L.; Lai, A.; Jusenius, K.; Wardlaw, J. M.; Cloughesy, T.; Spence, A. M.; Rockne, R.; AlvordJr., E. C.; Swanson, K. R., Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Cancer Res., 69, 9133-9140, (2009)
[42] Wheldon, T. E., Mathematical models in cancer research, (1988), Medical Science Series Hilger, Bristol · Zbl 0696.92002
[43] Wigg, D., Applied radiobiology and bioeffect planning, (2009), Medical Physics Pub Corp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.