Zhang, Mengqi; Lashgari, Iman; Zaki, Tamer A.; Brandt, Luca Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. (English) Zbl 1294.76119 J. Fluid Mech. 737, 249-279 (2013). MSC: 76E05 76A10 PDF BibTeX XML Cite \textit{M. Zhang} et al., J. Fluid Mech. 737, 249--279 (2013; Zbl 1294.76119) Full Text: DOI
D’Avino, G.; Hulsen, M. A.; Maffettone, P. L. Decoupled transient schemes for viscoelastic fluid flow with inertia. (English) Zbl 1365.76007 Comput. Fluids 66, 183-193 (2012). MSC: 76A10 76M25 PDF BibTeX XML Cite \textit{G. D'Avino} et al., Comput. Fluids 66, 183--193 (2012; Zbl 1365.76007) Full Text: DOI
D’Avino, G.; Hulsen, M. A. Decoupled second-order transient schemes for the flow of viscoelastic fluids without a viscous solvent contribution. (English) Zbl 1274.76264 J. Non-Newton. Fluid Mech. 165, No. 23-24, 1602-1612 (2010). MSC: 76M20 76A10 PDF BibTeX XML Cite \textit{G. D'Avino} and \textit{M. A. Hulsen}, J. Non-Newton. Fluid Mech. 165, No. 23--24, 1602--1612 (2010; Zbl 1274.76264) Full Text: DOI Link
Jovanović, Mihailo R.; Kumar, Satish Transient growth without inertia. (English) Zbl 1183.76263 Phys. Fluids 22, No. 2, Paper No. 023101, 19 p. (2010). MSC: 76-XX PDF BibTeX XML Cite \textit{M. R. Jovanović} and \textit{S. Kumar}, Phys. Fluids 22, No. 2, Paper No. 023101, 19 p. (2010; Zbl 1183.76263) Full Text: DOI
Saramito, Pierre A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model. (English) Zbl 1274.76065 J. Non-Newton. Fluid Mech. 158, No. 1-3, 154-161 (2009). MSC: 76A05 PDF BibTeX XML Cite \textit{P. Saramito}, J. Non-Newton. Fluid Mech. 158, No. 1--3, 154--161 (2009; Zbl 1274.76065) Full Text: DOI Link
Surana, Karan S.; Deshpande, Kedar M.; Romkes, Albert; Reddy, J. N. Numerical simulations of BVPs and IVPs in fiber spinning using Giesekus constitutive model in \(hpk\) framework. (English) Zbl 1423.76039 Int. J. Comput. Methods Eng. Sci. Mech. 10, No. 2, 143-157 (2009). MSC: 76A10 76M10 PDF BibTeX XML Cite \textit{K. S. Surana} et al., Int. J. Comput. Methods Eng. Sci. Mech. 10, No. 2, 143--157 (2009; Zbl 1423.76039) Full Text: DOI
Hoda, Nazish; Jovanović, Mihailo R.; Kumar, Satish Frequency responses of streamwise-constant perturbations in channel flows of Oldroyd-B fluids. (English) Zbl 1171.76364 J. Fluid Mech. 625, 411-434 (2009). MSC: 76E05 76A10 PDF BibTeX XML Cite \textit{N. Hoda} et al., J. Fluid Mech. 625, 411--434 (2009; Zbl 1171.76364) Full Text: DOI
Valério, J. V.; Carvalho, M. S.; Tomei, C. Efficient computation of the spectrum of viscoelastic flows. (English) Zbl 1330.76079 J. Comput. Phys. 228, No. 4, 1172-1187 (2009). MSC: 76M10 76A10 76E07 PDF BibTeX XML Cite \textit{J. V. Valério} et al., J. Comput. Phys. 228, No. 4, 1172--1187 (2009; Zbl 1330.76079) Full Text: DOI
Hoda, Nazish; Jovanović, Mihailo R.; Kumar, Satish Energy amplification in channel flows of viscoelastic fluids. (English) Zbl 1151.76372 J. Fluid Mech. 601, 407-424 (2008). MSC: 76A10 PDF BibTeX XML Cite \textit{N. Hoda} et al., J. Fluid Mech. 601, 407--424 (2008; Zbl 1151.76372) Full Text: DOI
Liakos, A. Finite-element approximation of viscoelastic fluid flow with slip boundary condition. (English) Zbl 1138.76386 Comput. Math. Appl. 49, No. 2-3, 281-294 (2005). MSC: 76M10 PDF BibTeX XML Cite \textit{A. Liakos}, Comput. Math. Appl. 49, No. 2--3, 281--294 (2005; Zbl 1138.76386) Full Text: DOI
Fiétier, N. Detecting instabilities in flows of viscoelastic fluids. (English) Zbl 1055.76016 Int. J. Numer. Methods Fluids 42, No. 12, 1345-1361 (2003). MSC: 76E05 76A10 76M22 76M20 PDF BibTeX XML Cite \textit{N. Fiétier}, Int. J. Numer. Methods Fluids 42, No. 12, 1345--1361 (2003; Zbl 1055.76016) Full Text: DOI
Liakos, Anastasios; Lee, Hyesuk Two-level finite element discretization of viscoelastic fluid flow. (English) Zbl 1054.76050 Comput. Methods Appl. Mech. Eng. 192, No. 44-46, 4965-4979 (2003). MSC: 76M10 76A10 PDF BibTeX XML Cite \textit{A. Liakos} and \textit{H. Lee}, Comput. Methods Appl. Mech. Eng. 192, No. 44--46, 4965--4979 (2003; Zbl 1054.76050) Full Text: DOI
Fiétier, Nicolas; Deville, Michel O. Time-dependent algorithms for the simulation of viscoelastic flows with spectral element methods: applications and stability. (English) Zbl 1047.76564 J. Comput. Phys. 186, No. 1, 93-121 (2003). MSC: 76M22 76A10 PDF BibTeX XML Cite \textit{N. Fiétier} and \textit{M. O. Deville}, J. Comput. Phys. 186, No. 1, 93--121 (2003; Zbl 1047.76564) Full Text: DOI
Balakrishnan, K.; Sureshkumar, R.; Ramachandran, P. A. An operator splitting-radial basis function method for the solution of transient nonlinear Poisson problems. (English) Zbl 0999.65111 Comput. Math. Appl. 43, No. 3-5, 289-304 (2002). MSC: 65M70 65M06 80A20 80M25 35K55 35K57 35J05 PDF BibTeX XML Cite \textit{K. Balakrishnan} et al., Comput. Math. Appl. 43, No. 3--5, 289--304 (2002; Zbl 0999.65111) Full Text: DOI