Talvila, Erik The continuous primitive integral in the plane. (English) Zbl 1451.26013 Real Anal. Exch. 45, No. 2, 283-326 (2020). Reviewer: Antonín Slavík (Praha) MSC: 26A39 26B15 46F10 PDF BibTeX XML Cite \textit{E. Talvila}, Real Anal. Exch. 45, No. 2, 283--326 (2020; Zbl 1451.26013) Full Text: DOI Euclid
Sanders, Sam Splittings and disjunctions in reverse mathematics. (English) Zbl 07196092 Notre Dame J. Formal Logic 61, No. 1, 51-74 (2020). MSC: 03B30 03D65 03F35 PDF BibTeX XML Cite \textit{S. Sanders}, Notre Dame J. Formal Logic 61, No. 1, 51--74 (2020; Zbl 07196092) Full Text: DOI Euclid
Flores-Medina, Oswaldo; Arredondo, Juan H.; Escamilla-Reyna, Juan A.; Mendoza-Torres, Francisco J. On the factorization theorem for the tensor product of integrable distributions. (English) Zbl 1447.46042 Ann. Funct. Anal. 11, No. 1, 118-136 (2020). MSC: 46J10 26A39 46M05 43A32 42A85 PDF BibTeX XML Cite \textit{O. Flores-Medina} et al., Ann. Funct. Anal. 11, No. 1, 118--136 (2020; Zbl 1447.46042) Full Text: DOI
Abdulaziz, Mohammad; Paulson, Lawrence C. An Isabelle/HOL formalisation of Green’s theorem. (English) Zbl 07100462 J. Autom. Reasoning 63, No. 3, 763-786 (2019). MSC: 68T15 PDF BibTeX XML Cite \textit{M. Abdulaziz} and \textit{L. C. Paulson}, J. Autom. Reasoning 63, No. 3, 763--786 (2019; Zbl 07100462) Full Text: DOI
Belle, Vaishak; Levesque, Hector J. Reasoning about discrete and continuous noisy sensors and effectors in dynamical systems. (English) Zbl 1451.68254 Artif. Intell. 262, 189-221 (2018). MSC: 68T27 68T30 68T37 68T40 PDF BibTeX XML Cite \textit{V. Belle} and \textit{H. J. Levesque}, Artif. Intell. 262, 189--221 (2018; Zbl 1451.68254) Full Text: DOI
Soares, A.; dos Santos, A. L. Presenting the straddle lemma in an introductory real analysis course. (English) Zbl 1396.97019 Int. J. Math. Educ. Sci. Technol. 48, No. 3, 428-434 (2017). MSC: 97I40 26A06 26A24 PDF BibTeX XML Cite \textit{A. Soares} and \textit{A. L. dos Santos}, Int. J. Math. Educ. Sci. Technol. 48, No. 3, 428--434 (2017; Zbl 1396.97019) Full Text: DOI
Talvila, Erik Higher order corrected trapezoidal rules in Lebesgue and Alexiewicz spaces. (English) Zbl 1424.26064 J. Class. Anal. 8, No. 1, 77-90 (2016). MSC: 26D15 26A39 41A55 65D30 PDF BibTeX XML Cite \textit{E. Talvila}, J. Class. Anal. 8, No. 1, 77--90 (2016; Zbl 1424.26064) Full Text: DOI arXiv
Ye, Guoju; Liu, Wei The distributional Henstock-Kurzweil integral and applications. (English) Zbl 1362.45009 Monatsh. Math. 181, No. 4, 975-989 (2016). Reviewer: Isabel Marrero (La Laguna) MSC: 45G10 26A42 46F05 46F30 PDF BibTeX XML Cite \textit{G. Ye} and \textit{W. Liu}, Monatsh. Math. 181, No. 4, 975--989 (2016; Zbl 1362.45009) Full Text: DOI
Albeverio, S.; Mazzucchi, S. A unified approach to infinite-dimensional integration. (English) Zbl 1339.28018 Rev. Math. Phys. 28, No. 2, Article ID 1650005, 43 p. (2016). MSC: 28C20 28C05 46G12 PDF BibTeX XML Cite \textit{S. Albeverio} and \textit{S. Mazzucchi}, Rev. Math. Phys. 28, No. 2, Article ID 1650005, 43 p. (2016; Zbl 1339.28018) Full Text: DOI
Mendoza Torres, Francisco J.; Guadalupe Morales Macías, M. On the convolution theorem for the Fourier transform of \(BV_0\) functions. (English) Zbl 1412.42015 J. Class. Anal. 7, No. 1, 63-71 (2015). MSC: 42A38 42A85 26A39 26A45 PDF BibTeX XML Cite \textit{F. J. Mendoza Torres} and \textit{M. Guadalupe Morales Macías}, J. Class. Anal. 7, No. 1, 63--71 (2015; Zbl 1412.42015) Full Text: DOI
Federson, Márcia; Mesquita, Jaqueline G.; Toon, Eduard Lyapunov theorems for measure functional differential equations via Kurzweil-equations. (English) Zbl 1327.34124 Math. Nachr. 288, No. 13, 1487-1511 (2015). Reviewer: Antonín Slavík (Praha) MSC: 34K20 34K05 45M10 45N05 PDF BibTeX XML Cite \textit{M. Federson} et al., Math. Nachr. 288, No. 13, 1487--1511 (2015; Zbl 1327.34124) Full Text: DOI
Shi, Zhiping; Gu, Weiqing; Li, Xiaojuan; Guan, Yong; Ye, Shiwei; Zhang, Jie; Wei, Hongxing The gauge integral theory in HOL4. (English) Zbl 1268.65033 J. Appl. Math. 2013, Article ID 160875, 7 p. (2013). MSC: 65D30 26B15 65Y15 PDF BibTeX XML Cite \textit{Z. Shi} et al., J. Appl. Math. 2013, Article ID 160875, 7 p. (2013; Zbl 1268.65033) Full Text: DOI
Méndez, Luis Ángel Gutiérrez; Reyna, Juan Alberto Escamilla; Cárdenas, Maria Guadalupe Raggi; García, Juan Francisco Estrada The closed graph theorem and the space of Henstock-Kurzweil integrable functions with the Alexiewicz norm. (English) Zbl 1267.54018 Abstr. Appl. Anal. 2013, Article ID 476287, 4 p. (2013). Reviewer: Ryszard Pawlak (Łódź) MSC: 54C35 54A25 46E15 PDF BibTeX XML Cite \textit{L. Á. G. Méndez} et al., Abstr. Appl. Anal. 2013, Article ID 476287, 4 p. (2013; Zbl 1267.54018) Full Text: DOI
Benitez, Julius V.; Jamil, Ferdinand P.; Seng, Chew Tuan Uniform differentiability. (English) Zbl 1275.26004 Real Anal. Exch. 37(2011-2012), No. 2, 451-462 (2012). Reviewer: Teodora-Liliana Rădulescu (Craiova) MSC: 26A03 26A24 26A06 26A39 26A42 PDF BibTeX XML Cite \textit{J. V. Benitez} et al., Real Anal. Exch. 37, No. 2, 451--462 (2012; Zbl 1275.26004) Full Text: DOI Euclid
Guoju, Ye On the Henstock-Kurzweil-Dunford and Kurzweil-Henstock-Pettis integrals. (English) Zbl 1214.28009 Rocky Mt. J. Math. 39, No. 4, 1233-1244 (2009). MSC: 28B05 26A39 46G10 PDF BibTeX XML Cite \textit{Y. Guoju}, Rocky Mt. J. Math. 39, No. 4, 1233--1244 (2009; Zbl 1214.28009) Full Text: DOI
Khadjiev, Djavvat The widest continuous integral. (English) Zbl 1175.28007 J. Math. Anal. Appl. 326, No. 2, 1101-1115 (2007). MSC: 28A99 26A42 PDF BibTeX XML Cite \textit{D. Khadjiev}, J. Math. Anal. Appl. 326, No. 2, 1101--1115 (2007; Zbl 1175.28007) Full Text: DOI
Lee, Tuo-Yeong The Henstock variational measure, Baire functions and a problem of Henstock. (English) Zbl 1099.26009 Rocky Mt. J. Math. 35, No. 6, 1981-1997 (2005). Reviewer: Jitan Lu (Singapore) MSC: 26B99 26A39 28A12 PDF BibTeX XML Cite \textit{T.-Y. Lee}, Rocky Mt. J. Math. 35, No. 6, 1981--1997 (2005; Zbl 1099.26009) Full Text: DOI
Talvila, Erik Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral. (English) Zbl 1081.26002 Czech. Math. J. 55, No. 4, 933-940 (2005). MSC: 26A24 26A39 PDF BibTeX XML Cite \textit{E. Talvila}, Czech. Math. J. 55, No. 4, 933--940 (2005; Zbl 1081.26002) Full Text: DOI EuDML arXiv
Lee, Tuo-Yeong Every absolutely Henstock-Kurzweil integrable function is McShane integrable: an alternative proof. (English) Zbl 1064.28011 Rocky Mt. J. Math. 34, No. 4, 1353-1365 (2004). Reviewer: Erik O. Talvila (Chilliwack) MSC: 28B05 26A39 PDF BibTeX XML Cite \textit{T.-Y. Lee}, Rocky Mt. J. Math. 34, No. 4, 1353--1365 (2004; Zbl 1064.28011) Full Text: DOI
Lee, Tuo-Yeong Product variational measures and Fubini–Tonelli type theorems for the Henstock–Kurzweil integral. (English) Zbl 1065.26013 J. Math. Anal. Appl. 298, No. 2, 677-692 (2004). Reviewer: Erik O. Talvila (Chilliwack) MSC: 26A39 26B15 PDF BibTeX XML Cite \textit{T.-Y. Lee}, J. Math. Anal. Appl. 298, No. 2, 677--692 (2004; Zbl 1065.26013) Full Text: DOI