Zayed, Elsayed M. E. On the dynamics of a new nonlinear rational difference equation. (English) Zbl 1443.39010 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 153-165 (2020). MSC: 39A30 39A22 39A10 PDF BibTeX XML Cite \textit{E. M. E. Zayed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 153--165 (2020; Zbl 1443.39010) Full Text: Link
Ibrahim, Tarek F. Bifurcation and periodically semicycles for fractional difference equation of fifth order. (English) Zbl 1438.39012 J. Nonlinear Sci. Appl. 11, No. 3, 375-382 (2018). MSC: 39A21 39A28 39A30 PDF BibTeX XML Cite \textit{T. F. Ibrahim}, J. Nonlinear Sci. Appl. 11, No. 3, 375--382 (2018; Zbl 1438.39012) Full Text: DOI
Ibrahim, T. F.; El-Moneam, M. A. Global stability of a higher-order difference equation. (English) Zbl 1374.39021 Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 1, 51-58 (2017). MSC: 39A30 PDF BibTeX XML Cite \textit{T. F. Ibrahim} and \textit{M. A. El-Moneam}, Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 1, 51--58 (2017; Zbl 1374.39021) Full Text: DOI
El-Metwally, H.; Elsayed, E. M.; Elabbasy, E. M. On the solutions of difference equations of order four. (English) Zbl 1355.39003 Rocky Mt. J. Math. 43, No. 3, 877-894 (2013). MSC: 39A10 39A22 PDF BibTeX XML Cite \textit{H. El-Metwally} et al., Rocky Mt. J. Math. 43, No. 3, 877--894 (2013; Zbl 1355.39003) Full Text: DOI Euclid
Camouzis, E.; Kent, C. M.; Ladas, G.; Lynd, C. D. On the global character of solutions of the system: \(x_{n+1}=\frac{\alpha_1+y_n}{x_n}\) and \(y_{n+1}=\frac{\alpha_2+\beta_2x_n+\gamma_2y_n}{A_2+B_2x_n+C_2y_n}\). (English) Zbl 1259.39009 J. Difference Equ. Appl. 18, No. 7, 1205-1252 (2012). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Difference Equ. Appl. 18, No. 7, 1205--1252 (2012; Zbl 1259.39009) Full Text: DOI
Berenhaut, Kenneth S.; Jones, Austin H. Asymptotic behaviour of solutions to difference equations involving ratios of elementary symmetric polynomials. (English) Zbl 1250.39007 J. Difference Equ. Appl. 18, No. 6, 963-972 (2012). Reviewer: Roman Šimon Hilscher (Brno) MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{K. S. Berenhaut} and \textit{A. H. Jones}, J. Difference Equ. Appl. 18, No. 6, 963--972 (2012; Zbl 1250.39007) Full Text: DOI
Gallego, Francisco Balibrea; Vicente, Antonio Cascales Studies on the difference equation \(x _{ n+1} = 1/(x _{ n }+x _{ n - 2})\). (English) Zbl 1382.39017 J. Difference Equ. Appl. 18, No. 4, 607-625 (2012). MSC: 39A23 PDF BibTeX XML Cite \textit{F. B. Gallego} and \textit{A. C. Vicente}, J. Difference Equ. Appl. 18, No. 4, 607--625 (2012; Zbl 1382.39017) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the global attractivity of two nonlinear difference equations. (English. Russian original) Zbl 1290.37007 J. Math. Sci., New York 177, No. 3, 487-499 (2011); translation from Sovrem. Mat. Prilozh. 70 (2011). MSC: 37B25 PDF BibTeX XML Full Text: DOI
Elsayed, E. M. Solution and attractivity for a rational recursive sequence. (English) Zbl 1252.39008 Discrete Dyn. Nat. Soc. 2011, Article ID 982309, 17 p. (2011). MSC: 39A20 39A30 PDF BibTeX XML Cite \textit{E. M. Elsayed}, Discrete Dyn. Nat. Soc. 2011, Article ID 982309, 17 p. (2011; Zbl 1252.39008) Full Text: DOI
Camouzis, E.; Ladas, G. Open problems and conjectures: Global results on rational systems in the plane. I. (English) Zbl 1218.39001 J. Difference Equ. Appl. 16, No. 8, 975-1013 (2010). MSC: 39-02 39Axx PDF BibTeX XML Cite \textit{E. Camouzis} and \textit{G. Ladas}, J. Difference Equ. Appl. 16, No. 8, 975--1013 (2010; Zbl 1218.39001) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{cx_{n}+Dx_{n-k}}\). (English) Zbl 1204.39008 Acta Appl. Math. 111, No. 3, 287-301 (2010). Reviewer: N. C. Apreutesei (Iaşi) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Acta Appl. Math. 111, No. 3, 287--301 (2010; Zbl 1204.39008) Full Text: DOI EuDML
Shojaei, M.; Saadati, R.; Adibi, H. Stability and periodic character of a rational third order difference equation. (English) Zbl 1197.39011 Chaos Solitons Fractals 39, No. 3, 1203-1209 (2009). MSC: 39A30 39A10 PDF BibTeX XML Cite \textit{M. Shojaei} et al., Chaos Solitons Fractals 39, No. 3, 1203--1209 (2009; Zbl 1197.39011) Full Text: DOI
El-Metwally, H. Qualitative properties of some higher order difference equations. (English) Zbl 1189.39014 Comput. Math. Appl. 58, No. 4, 686-692 (2009). MSC: 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{H. El-Metwally}, Comput. Math. Appl. 58, No. 4, 686--692 (2009; Zbl 1189.39014) Full Text: DOI
Elsayed, E. M. Qualitative behavior of difference equation of order two. (English) Zbl 1185.39012 Math. Comput. Modelling 50, No. 7-8, 1130-1141 (2009). MSC: 39A30 39A23 PDF BibTeX XML Cite \textit{E. M. Elsayed}, Math. Comput. Modelling 50, No. 7--8, 1130--1141 (2009; Zbl 1185.39012) Full Text: DOI
Palladino, Frank J. On periodic trichotomies. (English) Zbl 1207.39018 J. Difference Equ. Appl. 15, No. 6, 605-620 (2009). Reviewer: Xianhua Tang (Changsha) MSC: 39A23 39A20 39A30 PDF BibTeX XML Cite \textit{F. J. Palladino}, J. Difference Equ. Appl. 15, No. 6, 605--620 (2009; Zbl 1207.39018) Full Text: DOI
Palladino, Frank J. On the characterization of rational difference equations. (English) Zbl 1169.39005 J. Difference Equ. Appl. 15, No. 3, 253-260 (2009). Reviewer: Sui Sun Cheng (Hsinchu) MSC: 39A30 39A23 39A20 PDF BibTeX XML Cite \textit{F. J. Palladino}, J. Difference Equ. Appl. 15, No. 3, 253--260 (2009; Zbl 1169.39005) Full Text: DOI
Elsayed, E. M. Qualitative behavior of a rational recursive sequence. (English) Zbl 1158.39005 Indag. Math., New Ser. 19, No. 2, 189-201 (2008). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{E. M. Elsayed}, Indag. Math., New Ser. 19, No. 2, 189--201 (2008; Zbl 1158.39005) Full Text: DOI
Berenhaut, Kenneth S.; Donadio, Katherine M.; Foley, John D. On the rational recursive sequence \(y_n = A + \frac{y_{n-1}}{y_{n-m}}\) for smalla. (English) Zbl 1152.39304 Appl. Math. Lett. 21, No. 9, 906-909 (2008). MSC: 39A11 PDF BibTeX XML Cite \textit{K. S. Berenhaut} et al., Appl. Math. Lett. 21, No. 9, 906--909 (2008; Zbl 1152.39304) Full Text: DOI
Berenhaut, Kenneth S.; Foley, John D.; Stević, Stevo The global attractivity of the rational difference equation \(y_n=A+(\frac{y_{n-k}}{y_{n-m}})^p\). (English) Zbl 1134.39002 Proc. Am. Math. Soc. 136, No. 1, 103-110 (2008). Reviewer: Iryna Grytsay (Kyiv) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{K. S. Berenhaut} et al., Proc. Am. Math. Soc. 136, No. 1, 103--110 (2008; Zbl 1134.39002) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=(A+\sum_{i=0}^{k}\alpha _{i}x_{n - i})/(B+\sum _{i=0}^{k}\beta _{i}x_{n - i})\). (English) Zbl 1144.39014 Int. J. Math. Math. Sci. 2007, Article ID 23618, 12 p. (2007). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Int. J. Math. Math. Sci. 2007, Article ID 23618, 12 p. (2007; Zbl 1144.39014) Full Text: DOI
El-Metwally, H. Global behavior of an economic model. (English) Zbl 1196.39008 Chaos Solitons Fractals 33, No. 3, 994-1005 (2007). MSC: 39A22 39A23 39A30 39A10 91B64 PDF BibTeX XML Cite \textit{H. El-Metwally}, Chaos Solitons Fractals 33, No. 3, 994--1005 (2007; Zbl 1196.39008) Full Text: DOI
Dehghan, Mehdi; Mazrooei-Sebdani, Reza Some results about the global attractivity of bounded solutions of difference equations with applications to periodic solutions. (English) Zbl 1138.39005 Chaos Solitons Fractals 32, No. 4, 1398-1412 (2007). Reviewer: Pavel Rehak (Brno) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{R. Mazrooei-Sebdani}, Chaos Solitons Fractals 32, No. 4, 1398--1412 (2007; Zbl 1138.39005) Full Text: DOI
Bellavia, M. R.; Camouzis, E.; Kudlak, Z. A.; Ladas, G. On the boundedness character of rational equations. III. (English) Zbl 1126.39004 J. Difference Equ. Appl. 13, No. 6, 479-521 (2007). Reviewer: Edwin Engin Yaz (Milwaukee) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{M. R. Bellavia} et al., J. Difference Equ. Appl. 13, No. 6, 479--521 (2007; Zbl 1126.39004) Full Text: DOI
Berenhaut, Kenneth S.; Foley, John D.; Stevic, Stevo The global attractivity of the rational difference equation \(y_{n}=1+\frac{y_{n-k}}{y_{n-m}}\). (English) Zbl 1109.39004 Proc. Am. Math. Soc. 135, No. 4, 1133-1140 (2007). Reviewer: Rodica Luca (Iaşi) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{K. S. Berenhaut} et al., Proc. Am. Math. Soc. 135, No. 4, 1133--1140 (2007; Zbl 1109.39004) Full Text: DOI
Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. On the difference equation \(x_{n+1}=ax_n-bx_n/(cx_n-dx_{n-1})\). (English) Zbl 1139.39304 Adv. Difference Equ. 2006, Article ID 82579, 10 p. (2006). MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. M. Elabbasy} et al., Adv. Difference Equ. 2006, Article ID 82579, 10 p. (2006; Zbl 1139.39304) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac {\alpha x_n+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}} {Ax_b+ Bx_{n-1}+ Cx_{n-2}+ Dx_{n-3}}\). (English) Zbl 1106.39016 J. Appl. Math. Comput. 22, No. 1-2, 247-262 (2006). Reviewer: Wan-Tong Li (Lanzhou) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, J. Appl. Math. Comput. 22, No. 1--2, 247--262 (2006; Zbl 1106.39016) Full Text: DOI
Camouzis, E.; Ladas, G.; Quinn, E. P. On third-order rational difference equations. VI. (English) Zbl 1071.39502 J. Difference Equ. Appl. 11, No. 8, 759-777 (2005). MSC: 39A99 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Difference Equ. Appl. 11, No. 8, 759--777 (2005; Zbl 1071.39502) Full Text: DOI
Patula, W. T.; Voulov, H. D. On the oscillation and periodic character of a third order rational difference equation. (English) Zbl 1014.39010 Proc. Am. Math. Soc. 131, No. 3, 905-909 (2003). Reviewer: Mingshu Peng (Beijing) MSC: 39A11 39B05 PDF BibTeX XML Cite \textit{W. T. Patula} and \textit{H. D. Voulov}, Proc. Am. Math. Soc. 131, No. 3, 905--909 (2003; Zbl 1014.39010) Full Text: DOI