×

zbMATH — the first resource for mathematics

On positive solutions of one class of nonlinear integral equations of Hammerstein-Nemytskiĭ type on the whole axis. (English. Russian original) Zbl 1320.45001
Trans. Mosc. Math. Soc. 2014, 1-12 (2014); translation from Tr. Mosk. Mat. O.-va 75, No. 1, 1-14 (2014).
Summary: This paper is devoted to studying one class of nonlinear integral equations of Hammerstein-Nemytskiĭ type on the whole axis, which occurs in the theory of transfer in inhomogeneous medium. It is proved that these equations can be solved in various function spaces, and the asymptotic behaviour at infinity of the solutions that are constructed is studied.
MSC:
45G10 Other nonlinear integral equations
45M20 Positive solutions of integral equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Corduneanu, Integral equations and applications, Cambridge University Press, Cambridge, 1991. · Zbl 0714.45002
[2] S. N. Askhabov and Kh. Sh. Mukhtarov, On a class of nonlinear integral equations of convolution type, Differentsial\(^{\prime}\)nye Uravneniya 23 (1987), no. 3, 512 – 514, 550 (Russian). · Zbl 0627.45005
[3] P. P. Zabreĭko, A. I. Koshelev, M. A. Krasnosel’skiĭ, S. G. Mikhlin, L. S. Rakovshchik, and V. Ya. Stetsenko, Integral equations, Nauka, Moscow, 1968; English transl., Noordhoff Int. Publ., Leyden, Netherlands, 1975. · Zbl 0159.41001
[4] Jürgen Appell and Petr P. Zabrejko, Nonlinear superposition operators, Cambridge Tracts in Mathematics, vol. 95, Cambridge University Press, Cambridge, 1990. · Zbl 0701.47041
[5] N. B. Engibaryan, On a problem in nonlinear radiative transfer, Astrofizika 2 (1966), no. 1, 31-36; English transl., Astrophysics 2 (1966), no. 1, 12-14.
[6] V. V. Sobolev, A course on theoretical astrophysics, Nauka, Moscow, 1985. (Russian)
[7] J. D. Sargan, The distribution of wealth, Econometrica 25 (1957), 568 – 590. · Zbl 0078.34002 · doi:10.2307/1905384 · doi.org
[8] N. B. Engibaryan and A. Kh. Khachatryan, On the exact linearization of the sliding problem for a rarefied gas in the Bhatnagar-Gross-Krook model, Teoret. Mat. Fiz. 125 (2000), no. 2, 339 – 342 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 125 (2000), no. 2, 1589 – 1592. · Zbl 1026.82025 · doi:10.1007/BF02551017 · doi.org
[9] N. B. Engibaryan and A. Kh. Khachatryan, Problems in the nonlinear theory of the dynamics of a rarefied gas, Mat. Model. 16 (2004), no. 1, 67 – 74 (Russian, with English and Russian summaries). · Zbl 1109.76360
[10] A. Kh. Khachatryan and Kh. A. Khachatryan, Qualitative difference between solutions for a model of the Boltzmann equation in the linear and nonlinear cases, Theoret. and Math. Phys. 172 (2012), no. 3, 1315 – 1320. Translation of Teoret. Mat. Fiz. 172 (2012), no. 3, 497 – 504. · Zbl 1282.82028 · doi:10.1007/s11232-012-0116-4 · doi.org
[11] N. B. Engibaryan, Renewal equations on the half-line, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), no. 1, 61 – 76 (Russian, with Russian summary); English transl., Izv. Math. 63 (1999), no. 1, 57 – 71. , https://doi.org/10.1070/im1999v063n01ABEH000228 Norair B. Yengibarian, Renewal equation on the whole line, Stochastic Process. Appl. 85 (2000), no. 2, 237 – 247. · Zbl 0997.60096 · doi:10.1016/S0304-4149(99)00076-9 · doi.org
[12] M. S. Sgibnev, On the uniqueness of the solution of a system of renewal-type integral equations on the line, Sibirsk. Mat. Zh. 51 (2010), no. 1, 204 – 211 (Russian, with Russian summary); English transl., Sib. Math. J. 51 (2010), no. 1, 168 – 173. · Zbl 1253.45004 · doi:10.1007/s11202-010-0017-4 · doi.org
[13] Kenny S. Crump, On systems of renewal equations, J. Math. Anal. Appl. 30 (1970), 425 – 434. · Zbl 0198.22502 · doi:10.1016/0022-247X(70)90174-5 · doi.org
[14] M. S. Sgibnev, Systems of renewal-type integral operators on the line, Differ. Uravn. 40 (2004), no. 1, 128 – 137, 144 (Russian, with Russian summary); English transl., Differ. Equ. 40 (2004), no. 1, 137 – 147. · Zbl 1071.45004 · doi:10.1023/B:DIEQ.0000028723.13032.f1 · doi.org
[15] N. B. Engibaryan, Conservative systems of integral convolution equations on the half-line and the whole line, Mat. Sb. 193 (2002), no. 6, 61 – 82 (Russian, with Russian summary); English transl., Sb. Math. 193 (2002), no. 5-6, 847 – 867. · Zbl 1062.45002 · doi:10.1070/SM2002v193n06ABEH000660 · doi.org
[16] Aghavard Kh. Khachatryan and Khachatur A. Khachatryan, Hammerstein-Nemytskii type nonlinear integral equations on half-line in space \?\(_{1}\)(0,+\infty )\cap \?_\infty (0,+\infty ), Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), no. 1, 89 – 100. · Zbl 1290.45001
[17] Najeh Salhi and Mohamed Aziz Taoudi, Existence of integrable solutions of an integral equation of Hammerstein type on an unbounded interval, Mediterr. J. Math. 9 (2012), no. 4, 729 – 739. · Zbl 1276.47078 · doi:10.1007/s00009-011-0147-3 · doi.org
[18] L. G. Arabadzhyan and A. S. Khachatryan, On a class of convolution-type integral equations, Mat. Sb. 198 (2007), no. 7, 45 – 62 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 7-8, 949 – 966. · Zbl 1155.45002 · doi:10.1070/SM2007v198n07ABEH003868 · doi.org
[19] Ѐлементы теории функций и функционал\(^{\приме}\)ного анализа, 5тх ед., ”Наука”, Мосцощ, 1981 (Руссиан). Щитх а супплемент ”Банач алгебрас” бы В. М. Тихомиров. · Zbl 0235.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.