×

The evil twin: the basics of complement-toposes. (English) Zbl 1423.03261

Beziau, Jean-Yves (ed.) et al., New directions in paraconsistent logic. Collected papers of the 5th world congress on paraconsistency, WCP, Kolkata, India, February 13–17, 2014. New Delhi: Springer. Springer Proc. Math. Stat. 152, 375-425 (2015).
Summary: In this paper I describe how several notions and constructions in topos logic can be dualized, giving rise to complement-toposes with their paraconsistent internal logic, instead of the usual standard toposes with their intuitionistic logic.
For the entire collection see [Zbl 1338.03003].

MSC:

03G30 Categorical logic, topoi
03B53 Paraconsistent logics
18B25 Topoi
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Awodey, S.: Structure in mathematics and logic: a categorical perspective. Philos. Math. 4(3), 209-237 (1996) · Zbl 0874.00012 · doi:10.1093/philmat/4.3.209
[2] Awodey, S.: Continuity and logical completeness: an application of sheaf theory and topoi. In: Johan van Benthem, M.R., Heinzmann, G., Visser, H. (eds.) The Age of Alternative Logics. Assesing Philosophy of Logic and Mathematics Today, pp. 139-149. Springer, The Netherlands (2006) · Zbl 1129.03037
[3] Bell, J.L.: Lectures on the foundations of mathematics. http://publish.uwo.ca/ jbell/foundations
[4] Bell, J.L.: From absolute to local mathematics. Synthese 69, 409-426 (1986) · doi:10.1007/BF00413980
[5] Bell, J.L.: Toposes and Local Set Theories: An Introduction. Oxford Clarendon Press (1988) · Zbl 0649.18004
[6] Bell, J.L.: Oppositions and paradoxes in mathematics and philosophy. Axiomathes 15(2), 165-180 (2005) · doi:10.1007/s10516-004-6675-8
[7] Béziau, J.-Y.: S5 is a paraconsistent logic and so is first-order classical logic. Logical Investigations 9, 301-309 (2002) · Zbl 1038.03028
[8] Borceux, F.: Handbook of Categorical Algebra. Volume 3: Categories of Sheaves.In: Encyclopedia of Mathematics and its Applications, vol. 50. Cambridge University Press (1994) · Zbl 0911.18001
[9] Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.L.: New dimensions on translations between logics. Log. Univers. 3(1), 1-18 (2009) · Zbl 1255.03029 · doi:10.1007/s11787-009-0002-5
[10] Czermak, J.: A remark on Gentzen’s calculus of sequents. Notre Dame J. Form. Logic 18(3), 471-474 (1977) · Zbl 0314.02026 · doi:10.1305/ndjfl/1093888021
[11] de Queiroz, G.d.S.: On the duality between intuitionism and paraconsistency. Ph.D. thesis, Universidade Estadual de Campinas (1998). In Portuguese
[12] Estrada-González, L.: Quaternality in a topos-theoretical setting. Unpublished typescript, 201X
[13] Estrada-González, L.: Complement-topoi and dual intuitionistic logic. Australas. J. Logic 9, 26-44 (2010) · Zbl 1330.03097
[14] Estrada-González, L.: Models of possibilism and trivialism. Logic Log. Philos. 22(4), 175-205 (2012) · Zbl 1283.03018
[15] Estrada-González, L.: Disputing the many-valuedness of topos logic. In: Béziau, J.-Y., D’Ottaviano, I.M.L., Costa-Leite, A. (eds.) Aftermath of the Logical Paradise, pp. 193-213. CLE-Universidade Estadual de Campinas, Campinas (2015) · Zbl 1401.03108
[16] Estrada-González, L.: From (paraconsistent) topos logic to Universal (topos) logic. In: Koslow, A., Buchsbaum, A.R.d.V. (eds.) The Road to Universal Logic. Festschrift for Jean-Yves Béziau, vol. 2, pp. 263-295. Birkhäuser (2015) · Zbl 1376.03059
[17] Goldblatt, R.: Grothendieck topology as geometric modality. Math. Logic Q. 27(31-35), 495-529 (1981) · Zbl 0474.03018 · doi:10.1002/malq.19810273104
[18] Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Studies in Logic and the Foundations of Mathematics, vol. 98. North Holland Publishing Co., Amsterdam (1984). Revised edition · Zbl 0528.03039
[19] Goodman, N.: The logic of contradiction. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 27(8-10), 119-126 (2002) · Zbl 0467.03019
[20] Goré, R.P.: Dual intuitionistic logic revisited. In: Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods. Lecture Notes In Computer Science, vol. 1847, pp. 252-267. Springer, London (2000) · Zbl 0963.03042
[21] Iturrioz, L.: Les algèbres de Heyting-Brouwer et de Łukasiewicz trivalentes. Notre Dame J. Form. Logic 17(1), 119-126 (1981) · Zbl 0299.02072 · doi:10.1305/ndjfl/1093887429
[22] James, W., Mortensen, C.: Categories, sheaves, and paraconsistent logic. Unpublished typescript (1997)
[23] Lawvere, F.W: Quantifiers and sheaves, In: Berger, M., Dieudonné, J., Leray, J., Lions, J.L., Malliavin, P., and Serre, J.P. (eds.) Actes du Congrés International des Mathematiciens, 329-334, Nice, Gauthier-Villars (1970)
[24] Lawvere, F.W.: Continuously variable sets: algebraic geometry = geometric logic. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium ‘73 (Bristol, 1973), pp. 135-156. North Holland, Amsterdam (1975) · Zbl 0364.18002
[25] Lawvere, F.W.: Variable quantities and variable structures in topoi. In: Heller, A., Tierney, M. (eds.) Algebra, Topology, and Category Theory. A Collection of Papers in Honor of Samuel Eilenberg, pp. 101-131. Academic Press (1976) · Zbl 0353.02043
[26] Lawvere, F.W.: Introduction. In: Lawvere, F.W., Schanuel, S.H. (eds.) Categories in Continuum Physics. Springer (1982) · Zbl 0249.18015
[27] Lawvere, F.W.: Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Proceedings of the 1990 Meeting on Category Theory held in Como, Italy. Lecture Notes in Mathematics, vol. 1488, pp. 279-281. Springer (1991) · Zbl 0745.18002
[28] Lawvere, F.W.: Tools for the advancement of objective logic: closed categories and toposes. In: Macnamara, J., Reyes, G.E. (eds.) The Logical Foundations of Cognition, pp. 43-56. Oxford University Press (1994)
[29] Lawvere, F.W., Rosebrugh, R.: Sets for Mathematics. Cambridge University Press, Cambridge (2003) · Zbl 1031.18001 · doi:10.1017/CBO9780511755460
[30] Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics. A First Introduction to Categories. Cambridge University Press (2000). Second reprint · Zbl 1179.18001
[31] Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer (1992) · Zbl 0822.18001
[32] Macnab, D.S.: An Algebraic Study of Modal Operators on Heyting Algebras, with Applications to Topology and Sheafification. Ph.D. thesis, University of Aberdeen (1976)
[33] Macnab, D.S.: Modal operators on Heyting algebras. Algebra Univers. 12(1), 5-29 (1981) · Zbl 0459.06005 · doi:10.1007/BF02483860
[34] Marcos, J.a.: Ineffable inconsistencies. In: Béziau, J.-Y., Carnielli, W.A. (eds.) Paraconsistency with No Frontiers, pp. 301-311. Elsevier, Amsterdam (2006) · Zbl 1230.03056
[35] McKinsey, J.C.C., Tarski, A.: Some theorems about the sentential calculi of Lewis and Heyting. J. Symb. Logic 13(1), 1-15 (1948) · Zbl 0037.29409 · doi:10.2307/2268135
[36] McLarty, C.: Book review: John Bell. Introduction to toposes and local set theory. Notre Dame J. Form. Logic 31(1), 150-161 (1989) · doi:10.1305/ndjfl/1093635339
[37] McLarty, C.: Elementary Categories. Elementary Toposes. Oxford Clarendon Press, Toronto (1995) · Zbl 0828.18001
[38] McLarty, C.: Two constructivist aspects of category theory. Philosophia Scientiæ 27(Cahier spécial 6), 95-114 (2006)
[39] Mortensen, C.: Inconsistent Mathematics. Kluwer Mathematics and Its Applications Series. Kluwer Academic Publishers (1995) · Zbl 0827.03013
[40] Mortensen, C.: Closed set logic. In: Brady, R.T. (ed.) Relevant Logics and Their Rivals, vol. II, pp. 254-262. Ashgate Publishing, Aldershot (2003)
[41] Popper, K.: On the theory of deduction, parts I and II. Indagationes Mathematicae 10, 173-183 and 322-331 (1948)
[42] Rauszer, C.: Semi-Boolean algebras and their applications to intuitionistic logic with dual operations. Fundam. Math. 83, 219-249 (1974) · Zbl 0298.02064
[43] Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of intuitionistic logic. Diss. Math. 167, 1-62 (1980) · Zbl 0442.03024
[44] Reyes, G., Zawadowski, M.: Formal systems for modal operators on locales. Stud. Logica 52(4), 595-613 (1993) · Zbl 0798.03016 · doi:10.1007/BF01053262
[45] Reyes, G., Zolfaghari, H.: Topos-theoretic approaches to modality. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Proceedings of the 1990 Meeting on Category Theory held in Como, Italy. Lecture Notes in Mathematics, vol. 1488, pp. 359-378. Springer (1991) · Zbl 0745.03015
[46] Reyes, G., Zolfaghari, H.: Bi-Heyting algebras, toposes and modalities. J. Philos. Logic 25(1), 25-43 (1996) · Zbl 0851.03022 · doi:10.1007/BF00357841
[47] Rodin, A.: Axiomatic Method and Category Theory. http://arxiv.org/pdf/1210.1478v1.pdf · Zbl 1284.03007
[48] Shramko, Y.: Dual intuitionistic logic and a variety of negations: the logic of scientific research. Stud. Logica 80(2-3), 347-367 (2005) · Zbl 1085.03022 · doi:10.1007/s11225-005-8474-7
[49] Tierney, M.: Sheaf theory and the continuum hypothesis. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geometry and Logic. Lecture Notes in Mathematics, vol. 274, pp. 13-42. Springer (1972) · Zbl 0244.18005
[50] Urbas, I.: Dual intuitionistic logic. Notre Dame J. Form. Logic 37(3), 440-451 (1996) · Zbl 0869.03008 · doi:10.1305/ndjfl/1039886520
[51] van Inwagen, P.: Metaphysics. Westview Press, Boulder, Colorado (2008). Third Edition
[52] Vasyukov, V.: Structuring the universe of universal logic. Log. Univers. 1(2), 277-294 (2007) · Zbl 1149.03013 · doi:10.1007/s11787-007-0014-y
[53] Vigna, S.: A guided tour in the topos of graphs. Technical Report 199-7, Università di Milano, Dipartimento di Scienze dell’Informazione (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.