Yu, Gang Imaginary quadratic fields with class groups of 3-rank at least 2. (English) Zbl 07260774 Manuscr. Math. 163, No. 3-4, 569-574 (2020). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11R11 11R29 PDF BibTeX XML Cite \textit{G. Yu}, Manuscr. Math. 163, No. 3--4, 569--574 (2020; Zbl 07260774) Full Text: DOI
Mishra, Mohit Partial Dedekind zeta values and class numbers of R-D type real quadratic fields. (English) Zbl 07220071 Chakraborty, Kalyan (ed.) et al., Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4–7, 2017. Singapore: Springer (ISBN 978-981-15-1513-2/hbk; 978-981-15-1516-3/pbk; 978-981-15-1514-9/ebook). 163-174 (2020). Reviewer: Robert W. van der Waall (Amsterdam) MSC: 11R42 11R11 11R29 PDF BibTeX XML Cite \textit{M. Mishra}, in: Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4--7, 2017. Singapore: Springer. 163--174 (2020; Zbl 07220071) Full Text: DOI
Kalita, Himashree; Saikia, Helen K. A pair of quadratic fields with class number divisible by 3. (English) Zbl 1444.11212 Chakraborty, Kalyan (ed.) et al., Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4–7, 2017. Singapore: Springer. 141-146 (2020). MSC: 11R11 11R29 PDF BibTeX XML Cite \textit{H. Kalita} and \textit{H. K. Saikia}, in: Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4--7, 2017. Singapore: Springer. 141--146 (2020; Zbl 1444.11212) Full Text: DOI
Gillibert, Jean; Levin, Aaron A geometric approach to large class groups: a survey. (English) Zbl 1444.11218 Chakraborty, Kalyan (ed.) et al., Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4–7, 2017. Singapore: Springer. 1-15 (2020). MSC: 11R29 PDF BibTeX XML Cite \textit{J. Gillibert} and \textit{A. Levin}, in: Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4--7, 2017. Singapore: Springer. 1--15 (2020; Zbl 1444.11218) Full Text: DOI
Beckwith, Olivia Class number divisibility for imaginary quadratic fields. (English) Zbl 1448.11200 Res. Number Theory 6, No. 1, Paper No. 13, 12 p. (2020). Reviewer: Ayberk Zeytin (Istanbul) MSC: 11R29 11G05 11G40 PDF BibTeX XML Cite \textit{O. Beckwith}, Res. Number Theory 6, No. 1, Paper No. 13, 12 p. (2020; Zbl 1448.11200) Full Text: DOI
Pierce, Lillian B.; Turnage-Butterbaugh, Caroline L.; Wood, Melanie Matchett An effective Chebotarev density theorem for families of number fields, with an application to \(\ell \)-torsion in class groups. (English) Zbl 1445.11129 Invent. Math. 219, No. 2, 701-778 (2020). Reviewer: Claude Levesque (Québec) MSC: 11R29 11R42 11R45 11N75 PDF BibTeX XML Cite \textit{L. B. Pierce} et al., Invent. Math. 219, No. 2, 701--778 (2020; Zbl 1445.11129) Full Text: DOI
Chattopadhyay, Jaitra A short note on the divisibility of class numbers of real quadratic fields. (English) Zbl 1441.11271 J. Ramanujan Math. Soc. 34, No. 4, 389-392 (2019). MSC: 11R11 11R29 PDF BibTeX XML Cite \textit{J. Chattopadhyay}, J. Ramanujan Math. Soc. 34, No. 4, 389--392 (2019; Zbl 1441.11271) Full Text: Link
Hough, Bob Equidistribution of bounded torsion CM points. (English) Zbl 1440.11211 J. Anal. Math. 138, No. 2, 765-797 (2019). MSC: 11R29 11R16 11R11 11F12 PDF BibTeX XML Cite \textit{B. Hough}, J. Anal. Math. 138, No. 2, 765--797 (2019; Zbl 1440.11211) Full Text: DOI arXiv
Benjamin, Nathan; Kachru, Shamit; Ono, Ken; Rolen, Larry Black holes and class groups. (English) Zbl 1455.11065 Res. Math. Sci. 5, No. 4, Paper No. 43, 22 p. (2018). Reviewer: Andrew G. Earnest (Carbondale) MSC: 11E41 11R29 83C57 PDF BibTeX XML Cite \textit{N. Benjamin} et al., Res. Math. Sci. 5, No. 4, Paper No. 43, 22 p. (2018; Zbl 1455.11065) Full Text: DOI arXiv
Widmer, Martin Bounds for the \(\ell\)-torsion in class groups. (English) Zbl 1398.11138 Bull. Lond. Math. Soc. 50, No. 1, 124-131 (2018). Reviewer: Claude Levesque (Québec) MSC: 11R29 11R65 11R45 11G50 PDF BibTeX XML Cite \textit{M. Widmer}, Bull. Lond. Math. Soc. 50, No. 1, 124--131 (2018; Zbl 1398.11138) Full Text: DOI
Chakraborty, K.; Hoque, A.; Kishi, Y.; Pandey, P. P. Divisibility of the class numbers of imaginary quadratic fields. (English) Zbl 1431.11119 J. Number Theory 185, 339-348 (2018). MSC: 11R11 11R29 PDF BibTeX XML Cite \textit{K. Chakraborty} et al., J. Number Theory 185, 339--348 (2018; Zbl 1431.11119) Full Text: DOI
Liu, Yang; Park, Peter S.; Song, Zhuo Qun Bounded gaps between products of distinct primes. (English) Zbl 1426.11089 Res. Number Theory 3, Paper No. 26, 28 p. (2017). MSC: 11N05 11N35 11N37 PDF BibTeX XML Cite \textit{Y. Liu} et al., Res. Number Theory 3, Paper No. 26, 28 p. (2017; Zbl 1426.11089) Full Text: DOI
Ellenberg, Jordan; Pierce, Lillian B.; Matchett Wood, Melanie On \(\ell\)-torsion in class groups of number fields. (English) Zbl 1398.11136 Algebra Number Theory 11, No. 8, 1739-1778 (2017). Reviewer: Günter Lettl (Graz) MSC: 11R29 11N36 11R45 PDF BibTeX XML Cite \textit{J. Ellenberg} et al., Algebra Number Theory 11, No. 8, 1739--1778 (2017; Zbl 1398.11136) Full Text: DOI
Heath-Brown, D. R.; Pierce, L. B. Averages and moments associated to class numbers of imaginary quadratic fields. (English) Zbl 1391.11151 Compos. Math. 153, No. 11, 2287-2309 (2017). Reviewer: Günter Lettl (Graz) MSC: 11R29 11D45 PDF BibTeX XML Cite \textit{D. R. Heath-Brown} and \textit{L. B. Pierce}, Compos. Math. 153, No. 11, 2287--2309 (2017; Zbl 1391.11151) Full Text: DOI arXiv
Beckwith, Olivia Indivisibility of class numbers of imaginary quadratic fields. (English) Zbl 1406.11106 Res. Math. Sci. 4, Paper No. 20, 11 p. (2017). MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{O. Beckwith}, Res. Math. Sci. 4, Paper No. 20, 11 p. (2017; Zbl 1406.11106) Full Text: DOI arXiv
Mantilla-Soler, Guillermo The spinor genus of the integral trace. (English) Zbl 1410.11031 Trans. Am. Math. Soc. 369, No. 3, 1611-1626 (2017). MSC: 11E12 11R04 11S99 PDF BibTeX XML Cite \textit{G. Mantilla-Soler}, Trans. Am. Math. Soc. 369, No. 3, 1611--1626 (2017; Zbl 1410.11031) Full Text: DOI arXiv
Hoque, Azizul; Saikia, Helen K. On the divisibility of class numbers of quadratic fields and the solvability of Diophantine equations. (English) Zbl 1348.11087 S\(\vec{\text{e}}\)MA J. 73, No. 3, 213-217 (2016). MSC: 11R29 11D41 11R11 PDF BibTeX XML Cite \textit{A. Hoque} and \textit{H. K. Saikia}, S\(\vec{\text{e}}\)MA J. 73, No. 3, 213--217 (2016; Zbl 1348.11087) Full Text: DOI
Ito, Akiko Notes on the divisibility of the class numbers of imaginary quadratic fields \(\mathbb {Q}(\sqrt{3^{2e} - 4k^n})\). (English) Zbl 1400.11145 Abh. Math. Semin. Univ. Hamb. 85, No. 1, 1-21 (2015). MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{A. Ito}, Abh. Math. Semin. Univ. Hamb. 85, No. 1, 1--21 (2015; Zbl 1400.11145) Full Text: DOI arXiv
Lopez, Adele Imaginary quadratic fields with 2-class group of type \((2,2^\ell)\). (English) Zbl 1395.11124 Funct. Approximatio, Comment. Math. 52, No. 1, 37-55 (2015). MSC: 11R29 11P32 PDF BibTeX XML Cite \textit{A. Lopez}, Funct. Approximatio, Comment. Math. 52, No. 1, 37--55 (2015; Zbl 1395.11124) Full Text: DOI Euclid arXiv
Hoque, Azizul; Saikia, Helen K. On generalized Mersenne prime. (English) Zbl 1375.11004 S\(\vec{\text{e}}\)MA J. 66, No. 1, 1-7 (2014). MSC: 11A51 11R29 11R11 PDF BibTeX XML Cite \textit{A. Hoque} and \textit{H. K. Saikia}, S\(\vec{\text{e}}\)MA J. 66, No. 1, 1--7 (2014; Zbl 1375.11004) Full Text: DOI
Chung, Ping Ngai; Li, Shiyu Bounded gaps between products of special primes. (English) Zbl 1296.11118 Mathematics 2, No. 1, 37-52 (2014). MSC: 11N05 11N25 11G05 PDF BibTeX XML Cite \textit{P. N. Chung} and \textit{S. Li}, Mathematics 2, No. 1, 37--52 (2014; Zbl 1296.11118) Full Text: DOI
Taniguchi, Takashi; Thorne, Frank Secondary terms in counting functions for cubic fields. (English) Zbl 1294.11192 Duke Math. J. 162, No. 13, 2451-2508 (2013). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R16 11R29 11R45 PDF BibTeX XML Cite \textit{T. Taniguchi} and \textit{F. Thorne}, Duke Math. J. 162, No. 13, 2451--2508 (2013; Zbl 1294.11192) Full Text: DOI Euclid arXiv
Banerjee, Pradipto; Kotyada, Srinivas Divisibility of class numbers of imaginary quadratic function fields by a fixed odd number. (English) Zbl 1280.11068 Proc. Indian Acad. Sci., Math. Sci. 123, No. 1, 1-18 (2013). Reviewer: Gabriel D. Villa-Salvador (México D. F.) MSC: 11R29 11R58 11T55 PDF BibTeX XML Cite \textit{P. Banerjee} and \textit{S. Kotyada}, Proc. Indian Acad. Sci., Math. Sci. 123, No. 1, 1--18 (2013; Zbl 1280.11068) Full Text: DOI arXiv
Lapkova, K. Divisibility of class numbers of imaginary quadratic fields whose discriminant has only three prime factors. (English) Zbl 1299.11078 Acta Math. Hung. 137, No. 1-2, 36-63 (2012). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R11 11R29 11P55 PDF BibTeX XML Cite \textit{K. Lapkova}, Acta Math. Hung. 137, No. 1--2, 36--63 (2012; Zbl 1299.11078) Full Text: DOI
Pekin, A. Divisibility criteria for class numbers of imaginary quadratic fields whose discriminant has only two prime factors. (English) Zbl 1261.11072 Abstr. Appl. Anal. 2012, Article ID 570154, 4 p. (2012). MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{A. Pekin}, Abstr. Appl. Anal. 2012, Article ID 570154, 4 p. (2012; Zbl 1261.11072) Full Text: DOI
Ito, Akiko A note on the divisibility of class numbers of imaginary quadratic fields \(\mathbb Q(\sqrt{a^2 - k^n})\). (English) Zbl 1247.11139 Proc. Japan Acad., Ser. A 87, No. 9, 151-155 (2011). MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{A. Ito}, Proc. Japan Acad., Ser. A 87, No. 9, 151--155 (2011; Zbl 1247.11139) Full Text: DOI
Cho, Peter Jaehyun Sum of three squares and class numbers of imaginary quadratic fields. (English) Zbl 1256.11058 Proc. Japan Acad., Ser. A 87, No. 6, 91-94 (2011). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R11 11R29 PDF BibTeX XML Cite \textit{P. J. Cho}, Proc. Japan Acad., Ser. A 87, No. 6, 91--94 (2011; Zbl 1256.11058) Full Text: DOI
Le, Daniel; Manber, Shelly; Shah, Shrenik On \(p\)-adic properties of twisted traces of singular moduli. (English) Zbl 1233.11046 Int. J. Number Theory 6, No. 3, 625-653 (2010). MSC: 11F33 11G05 11R29 PDF BibTeX XML Cite \textit{D. Le} et al., Int. J. Number Theory 6, No. 3, 625--653 (2010; Zbl 1233.11046) Full Text: DOI
Louboutin, Stéphane R. On the divisibility of the class number of imaginary quadratic number fields. (English) Zbl 1269.11111 Proc. Am. Math. Soc. 137, No. 12, 4025-4028 (2009). MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{S. R. Louboutin}, Proc. Am. Math. Soc. 137, No. 12, 4025--4028 (2009; Zbl 1269.11111) Full Text: DOI
Byeon, Dongho Quadratic fields with noncyclic 5- or 7-class groups. (English) Zbl 1195.11143 Ramanujan J. 19, No. 1, 71-77 (2009). Reviewer: Florin Nicolae (Berlin) MSC: 11R11 11R29 PDF BibTeX XML Cite \textit{D. Byeon}, Ramanujan J. 19, No. 1, 71--77 (2009; Zbl 1195.11143) Full Text: DOI
Mukhopadhyay, Anirban; Murty, M. Ram; Srinivas, Kotyada Counting squarefree discriminants of trinomials under \(abc\). (English) Zbl 1217.11093 Proc. Am. Math. Soc. 137, No. 10, 3219-3226 (2009). Reviewer: Maurice Mignotte (Strasbourg) MSC: 11R09 11C08 11R11 11R47 PDF BibTeX XML Cite \textit{A. Mukhopadhyay} et al., Proc. Am. Math. Soc. 137, No. 10, 3219--3226 (2009; Zbl 1217.11093) Full Text: DOI arXiv
Luca, Florian; Pacelli, Allison M. Class groups of quadratic fields of 3-rank at least 2: effective bounds. (English) Zbl 1167.11038 J. Number Theory 128, No. 4, 796-804 (2008). Reviewer: Richard A. Mollin (Calgary) MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{F. Luca} and \textit{A. M. Pacelli}, J. Number Theory 128, No. 4, 796--804 (2008; Zbl 1167.11038) Full Text: DOI
Chakraborty, Kalyan; Luca, Florian; Mukhopadhyay, Anirban Exponents of class groups of real quadratic fields. (English) Zbl 1165.11081 Int. J. Number Theory 4, No. 4, 597-611 (2008). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11R58 11R29 PDF BibTeX XML Cite \textit{K. Chakraborty} et al., Int. J. Number Theory 4, No. 4, 597--611 (2008; Zbl 1165.11081) Full Text: DOI
Byeon, Dongho; Lee, Shinae Divisibility of class numbers of imaginary quadratic fields whose discriminant has only two prime factors. (English) Zbl 1226.11117 Proc. Japan Acad., Ser. A 84, No. 1, 8-10 (2008). MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{D. Byeon} and \textit{S. Lee}, Proc. Japan Acad., Ser. A 84, No. 1, 8--10 (2008; Zbl 1226.11117) Full Text: DOI Euclid
Levin, Aaron Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves. (English) Zbl 1216.11101 J. Théor. Nombres Bordx. 19, No. 2, 485-499 (2007). Reviewer: Olaf Ninnemann (Berlin) MSC: 11R29 11G30 11R09 11R21 PDF BibTeX XML Cite \textit{A. Levin}, J. Théor. Nombres Bordx. 19, No. 2, 485--499 (2007; Zbl 1216.11101) Full Text: DOI Numdam EuDML
Heath-Brown, D. Roger Quadratic class numbers divisible by 3. (English) Zbl 1140.11050 Funct. Approximatio, Comment. Math. 37, Part 1, 203-211 (2007). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11R29 11R11 11R47 11R45 PDF BibTeX XML Cite \textit{D. R. Heath-Brown}, Funct. Approximatio, Comment. Math. 37, Part 1, 203--211 (2007; Zbl 1140.11050) Full Text: DOI Euclid
Byeon, Dongho Imaginary quadratic fields with noncyclic ideal class groups. (English) Zbl 1161.11391 Ramanujan J. 11, No. 2, 159-163 (2006). MSC: 11R11 11R29 PDF BibTeX XML Cite \textit{D. Byeon}, Ramanujan J. 11, No. 2, 159--163 (2006; Zbl 1161.11391) Full Text: DOI
Byeon, Dongho Real quadratic fields with class number divisible by 5 or 7. (English) Zbl 1153.11337 Manuscr. Math. 120, No. 2, 211-215 (2006). MSC: 11R11 11R29 PDF BibTeX XML Cite \textit{D. Byeon}, Manuscr. Math. 120, No. 2, 211--215 (2006; Zbl 1153.11337) Full Text: DOI
Helfgott, H. A.; Venkatesh, Akshay Integral points on elliptic curves and \(3\)-torsion in class groups. (English) Zbl 1127.14029 J. Am. Math. Soc. 19, No. 3, 527-550 (2006). Reviewer: Vasyl I. Andriychuk (Lviv) MSC: 11G05 11R29 14G05 11R11 PDF BibTeX XML Cite \textit{H. A. Helfgott} and \textit{A. Venkatesh}, J. Am. Math. Soc. 19, No. 3, 527--550 (2006; Zbl 1127.14029) Full Text: DOI
Balog, Antal; Ono, Ken Elements of class groups and Shafarevich-Tate groups of elliptic curves. (English) Zbl 1048.11044 Duke Math. J. 120, No. 1, 35-63 (2003). Reviewer: T. G. Berry (Caracas) MSC: 11G05 11G40 PDF BibTeX XML Cite \textit{A. Balog} and \textit{K. Ono}, Duke Math. J. 120, No. 1, 35--63 (2003; Zbl 1048.11044) Full Text: DOI
Chakraborty, K.; Murty, M. Ram On the number of real quadratic fields with class number divisible by 3. (English) Zbl 1024.11073 Proc. Am. Math. Soc. 131, No. 1, 41-44 (2003). Reviewer: Hideo Yokoi (Aichi) MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{K. Chakraborty} and \textit{M. R. Murty}, Proc. Am. Math. Soc. 131, No. 1, 41--44 (2003; Zbl 1024.11073) Full Text: DOI
Yu, Gang A note on the divisibility of class numbers of real quadratic fields. (English) Zbl 1036.11057 J. Number Theory 97, No. 1, 35-44 (2002). Reviewer: Ken Yamamura (Yokosuka) MSC: 11R29 11R11 PDF BibTeX XML Cite \textit{G. Yu}, J. Number Theory 97, No. 1, 35--44 (2002; Zbl 1036.11057) Full Text: DOI