Zayed, Elsayed M. E. On the dynamics of a new nonlinear rational difference equation. (English) Zbl 1443.39010 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 153-165 (2020). MSC: 39A30 39A22 39A10 PDF BibTeX XML Cite \textit{E. M. E. Zayed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 153--165 (2020; Zbl 1443.39010) Full Text: Link
Hu, Lin-Xia; Xia, Hong-Ming Global asymptotic stability of a second order rational difference equation. (English) Zbl 1334.39044 Appl. Math. Comput. 233, 377-382 (2014). MSC: 39A30 PDF BibTeX XML Cite \textit{L.-X. Hu} and \textit{H.-M. Xia}, Appl. Math. Comput. 233, 377--382 (2014; Zbl 1334.39044) Full Text: DOI
Gan, Chenquan; Yang, Xiaofan; Liu, Wanping Global behavior of \(x_{n + 1} = (\alpha + \beta x_{n - k}) /(\gamma + x_n)\). (English) Zbl 1417.39058 Discrete Dyn. Nat. Soc. 2013, Article ID 963757, 5 p. (2013). MSC: 39A30 39A23 PDF BibTeX XML Cite \textit{C. Gan} et al., Discrete Dyn. Nat. Soc. 2013, Article ID 963757, 5 p. (2013; Zbl 1417.39058) Full Text: DOI
Hu, Lin-Xia; He, Wan-Sheng; Xia, Hong-Ming Global asymptotic behavior of a rational difference equation. (English) Zbl 1246.39008 Appl. Math. Comput. 218, No. 15, 7818-7828 (2012). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{L.-X. Hu} et al., Appl. Math. Comput. 218, No. 15, 7818--7828 (2012; Zbl 1246.39008) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the global attractivity of two nonlinear difference equations. (English. Russian original) Zbl 1290.37007 J. Math. Sci., New York 177, No. 3, 487-499 (2011); translation from Sovrem. Mat. Prilozh. 70 (2011). MSC: 37B25 PDF BibTeX XML Full Text: DOI
Shi, Qihong; Xiao, Qian; Yuan, Guoqiang; Liu, Xiaojun Dynamic behavior of a nonlinear rational difference equation and generalization. (English) Zbl 1271.39011 Adv. Difference Equ. 2011, Paper No. 36, 8 p. (2011). MSC: 39A20 39A22 39A30 PDF BibTeX XML Cite \textit{Q. Shi} et al., Adv. Difference Equ. 2011, Paper No. 36, 8 p. (2011; Zbl 1271.39011) Full Text: DOI
Xiao, Qian; Shi, Qi-Hong Qualitative behavior of a rational difference equation. (English) Zbl 1263.39018 Adv. Difference Equ. 2011, Paper No. 6 (2011). MSC: 39A30 39A23 PDF BibTeX XML Cite \textit{Q. Xiao} and \textit{Q.-H. Shi}, Adv. Difference Equ. 2011, Paper No. 6 (2011; Zbl 1263.39018) Full Text: DOI
Dehghan, Mehdi; Rastegar, Narges Stability and periodic character of a third order difference equation. (English) Zbl 1235.39009 Math. Comput. Modelling 54, No. 11-12, 2560-2564 (2011). MSC: 39A30 39A22 39A23 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{N. Rastegar}, Math. Comput. Modelling 54, No. 11--12, 2560--2564 (2011; Zbl 1235.39009) Full Text: DOI
Wang, Chang-you; Wang, Shu; Wang, Wei Global asymptotic stability of equilibrium point for a family of rational difference equations. (English) Zbl 1221.39026 Appl. Math. Lett. 24, No. 5, 714-718 (2011). Reviewer: Yongli Song (Shanghai) MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{C.-y. Wang} et al., Appl. Math. Lett. 24, No. 5, 714--718 (2011; Zbl 1221.39026) Full Text: DOI
Hamza, Alaa E. On the recursive sequence \(x_{n+1}=(\alpha-\beta x_{n-k})/g(x_n,x_{n-1},\dots,x_{n-k+1})\). (English) Zbl 1208.39012 Comput. Math. Appl. 60, No. 7, 2170-2177 (2010). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A21 39A30 PDF BibTeX XML Cite \textit{A. E. Hamza}, Comput. Math. Appl. 60, No. 7, 2170--2177 (2010; Zbl 1208.39012) Full Text: DOI
Wang, Chang-You; Shi, Qi-Hong; Wang, Shu Asymptotic behavior of equilibrium point for a family of rational difference equations. (English) Zbl 1204.39011 Adv. Difference Equ. 2010, Article ID 505906, 10 p. (2010). MSC: 39A22 PDF BibTeX XML Cite \textit{C.-Y. Wang} et al., Adv. Difference Equ. 2010, Article ID 505906, 10 p. (2010; Zbl 1204.39011) Full Text: DOI EuDML
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{cx_{n}+Dx_{n-k}}\). (English) Zbl 1204.39008 Acta Appl. Math. 111, No. 3, 287-301 (2010). Reviewer: N. C. Apreutesei (Iaşi) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Acta Appl. Math. 111, No. 3, 287--301 (2010; Zbl 1204.39008) Full Text: DOI EuDML
Wang, Chang-You; Wang, Shu; Wang, Zhi-Wei; Gong, Fei; Wang, Rui-Fang Asymptotic stability for a class of nonlinear difference equations. (English) Zbl 1192.39015 Discrete Dyn. Nat. Soc. 2010, Article ID 791610, 10 p. (2010). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{C.-Y. Wang} et al., Discrete Dyn. Nat. Soc. 2010, Article ID 791610, 10 p. (2010; Zbl 1192.39015) Full Text: DOI EuDML
Jia, Xiu-Mei; Hu, Lin-Xia Global attractivity of a higher-order nonlinear difference equation. (English) Zbl 1201.39006 Appl. Math. Comput. 216, No. 3, 857-861 (2010). Reviewer: Miloš Čanak (Beograd) MSC: 39A20 39A30 39A22 PDF BibTeX XML Cite \textit{X.-M. Jia} and \textit{L.-X. Hu}, Appl. Math. Comput. 216, No. 3, 857--861 (2010; Zbl 1201.39006) Full Text: DOI
Wang, Chang-You; Gong, Fei; Wang, Shu; Li, Lin-Rui; Shi, Qi-Hong Asymptotic behavior of equilibrium point for a class of nonlinear difference equation. (English) Zbl 1216.39018 Adv. Difference Equ. 2009, Article ID 214309, 8 p. (2009). MSC: 39A22 39A20 PDF BibTeX XML Cite \textit{C.-Y. Wang} et al., Adv. Difference Equ. 2009, Article ID 214309, 8 p. (2009; Zbl 1216.39018) Full Text: DOI
Shojaei, M.; Saadati, R.; Adibi, H. Stability and periodic character of a rational third order difference equation. (English) Zbl 1197.39011 Chaos Solitons Fractals 39, No. 3, 1203-1209 (2009). MSC: 39A30 39A10 PDF BibTeX XML Cite \textit{M. Shojaei} et al., Chaos Solitons Fractals 39, No. 3, 1203--1209 (2009; Zbl 1197.39011) Full Text: DOI
Hamza, Alaa E.; Barbary, S. G. Attractivity of the recursive sequence \(x_{n+1}=(\alpha-\beta x_n)F(x_{n-1},\dots,x_{n-k})\). (English) Zbl 1187.39023 Math. Comput. Modelling 48, No. 11-12, 1744-1749 (2008). MSC: 39A30 PDF BibTeX XML Cite \textit{A. E. Hamza} and \textit{S. G. Barbary}, Math. Comput. Modelling 48, No. 11--12, 1744--1749 (2008; Zbl 1187.39023) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=(A+\sum_{i=0}^{k}\alpha _{i}x_{n - i})/(B+\sum _{i=0}^{k}\beta _{i}x_{n - i})\). (English) Zbl 1144.39014 Int. J. Math. Math. Sci. 2007, Article ID 23618, 12 p. (2007). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Int. J. Math. Math. Sci. 2007, Article ID 23618, 12 p. (2007; Zbl 1144.39014) Full Text: DOI
Yan, Xing-Xue; Li, Wan-Tong; Zhao, Zhu Global asymptotic stability for a higher order nonlinear rational difference equations. (English) Zbl 1110.39011 Appl. Math. Comput. 182, No. 2, 1819-1831 (2006). Reviewer: Fozi Dannan (Damascus) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X.-X. Yan} et al., Appl. Math. Comput. 182, No. 2, 1819--1831 (2006; Zbl 1110.39011) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac {\alpha x_n+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3}} {Ax_b+ Bx_{n-1}+ Cx_{n-2}+ Dx_{n-3}}\). (English) Zbl 1106.39016 J. Appl. Math. Comput. 22, No. 1-2, 247-262 (2006). Reviewer: Wan-Tong Li (Lanzhou) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, J. Appl. Math. Comput. 22, No. 1--2, 247--262 (2006; Zbl 1106.39016) Full Text: DOI
Zhang, Lijie; Zhang, Guang; Liu, Hui Periodicity and attractivity for a rational recursive sequence. (English) Zbl 1083.39015 J. Appl. Math. Comput. 19, No. 1-2, 191-201 (2005). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Appl. Math. Comput. 19, No. 1--2, 191--201 (2005; Zbl 1083.39015) Full Text: DOI
Su, You-Hui; Li, Wan-Tong Global asymptotic stability of a second-order nonlinear difference equation. (English) Zbl 1098.39005 Appl. Math. Comput. 168, No. 2, 981-989 (2005). Reviewer: Qingkai Kong (DeKalb) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{Y.-H. Su} and \textit{W.-T. Li}, Appl. Math. Comput. 168, No. 2, 981--989 (2005; Zbl 1098.39005) Full Text: DOI
Li, Wantong; Sun, Hongrui Dynamics of a rational difference equation. (English) Zbl 1071.39009 Appl. Math. Comput. 163, No. 2, 577-591 (2005). Reviewer: Fozi Dannan (Damascus) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{W. Li} and \textit{H. Sun}, Appl. Math. Comput. 163, No. 2, 577--591 (2005; Zbl 1071.39009) Full Text: DOI
Yan, Xing-Xue; Li, Wan-Tong; Zhao, Zhu On the recursive sequence \(x_{n+1}=\alpha-(x_n/x_{n-1})\). (English) Zbl 1068.39030 J. Appl. Math. Comput. 17, No. 1-2, 269-282 (2005). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 37C70 PDF BibTeX XML Cite \textit{X.-X. Yan} et al., J. Appl. Math. Comput. 17, No. 1--2, 269--282 (2005; Zbl 1068.39030) Full Text: DOI
Yang, Xiaofan; Su, Weifeng; Chen, Bill; Megson, Graham M.; Evans, David J. On the recursive sequence \(x_n = \frac{ax_{n-1}+bx_{n-2}}{c+dx_{n-1}x_{n-2}}\). (English) Zbl 1068.39031 Appl. Math. Comput. 162, No. 3, 1485-1497 (2005). Reviewer: Wan-Tong Li (Lanzhou) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 162, No. 3, 1485--1497 (2005; Zbl 1068.39031) Full Text: DOI
Yang, Xiaofan; Lai, Hongjian; Evans, David J.; Megson, Graham M. Global asymptotic stability in a rational recursive sequence. (English) Zbl 1071.39018 Appl. Math. Comput. 158, No. 3, 703-716 (2004). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 158, No. 3, 703--716 (2004; Zbl 1071.39018) Full Text: DOI
Yang, Xiaofan; Chen, Bill; Megson, Graham M.; Evans, David J. Global attractivity in a recursive sequence. (English) Zbl 1063.39011 Appl. Math. Comput. 158, No. 3, 667-682 (2004). Reviewer: Vladimir Răsvan (Compiègne) MSC: 39A11 39A12 39A20 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Math. Comput. 158, No. 3, 667--682 (2004; Zbl 1063.39011) Full Text: DOI
Yan, Xingxue; Li, Wantong Dynamic behavior of a recursive sequence. (English) Zbl 1069.39025 Appl. Math. Comput. 157, No. 3, 713-727 (2004). Reviewer: Roman Hilscher (Brno) MSC: 39A20 39A11 PDF BibTeX XML Cite \textit{X. Yan} and \textit{W. Li}, Appl. Math. Comput. 157, No. 3, 713--727 (2004; Zbl 1069.39025) Full Text: DOI
El-Owaidy, H. M.; Ahmed, A. M.; Elsady, Z. Global attractivity of the recursive sequence \(x_{n+1}= \frac {\alpha- \beta x_{n-k}} {\gamma+ x_n}\). (English) Zbl 1062.39007 J. Appl. Math. Comput. 16, No. 1-2, 243-249 (2004). Reviewer: Jurang Yan (Taiyuan) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{H. M. El-Owaidy} et al., J. Appl. Math. Comput. 16, No. 1--2, 243--249 (2004; Zbl 1062.39007) Full Text: DOI
He, Wansheng; Li, Wantong; Yan, Xinxue Global attractivity of the difference equation \(x_{n+1}=\alpha+(x_{n-k}/x_{n})\). (English) Zbl 1056.39021 Appl. Math. Comput. 151, No. 3, 879-885 (2004). Reviewer: Akira Tsutsumi (Suita) MSC: 39A12 39A10 39A11 PDF BibTeX XML Cite \textit{W. He} et al., Appl. Math. Comput. 151, No. 3, 879--885 (2004; Zbl 1056.39021) Full Text: DOI
El-Owaidy, H. M.; Ahmed, A. M.; Elsady, Z. Global attractivity of the recursive sequence \(x_{n+1}=(\alpha-\beta x_{n-1})/(\gamma+x_{n})\). (English) Zbl 1055.39028 Appl. Math. Comput. 151, No. 3, 827-833 (2004). Reviewer: Akira Tsutsumi (Suita) MSC: 39A12 39A11 39A20 PDF BibTeX XML Cite \textit{H. M. El-Owaidy} et al., Appl. Math. Comput. 151, No. 3, 827--833 (2004; Zbl 1055.39028) Full Text: DOI
Yan, Xing-Xue; Li, Wan-Tong Global attractivity for a class of higher order nonlinear difference equations. (English) Zbl 1040.39009 Appl. Math. Comput. 149, No. 2, 533-546 (2004). Reviewer: Nguyen Van Minh (Harrisonburg) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 149, No. 2, 533--546 (2004; Zbl 1040.39009) Full Text: DOI
El-Owaidy, H. M.; Ahmed, A. M.; Mousa, M. S. On the recursive sequences \(x_{n+1}=\frac {-\alpha x_{n-1}}{\beta\pm x_n}\). (English) Zbl 1034.39004 Appl. Math. Comput. 145, No. 2-3, 747-753 (2003). Reviewer: Patricia J. Y. Wong (Singapore) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{H. M. El-Owaidy} et al., Appl. Math. Comput. 145, No. 2--3, 747--753 (2003; Zbl 1034.39004) Full Text: DOI
Yan, Xing-Xue; Li, Wan-Tong Global attractivity in a rational recursive sequence. (English) Zbl 1044.39013 Appl. Math. Comput. 145, No. 1, 1-12 (2003). Reviewer: Patricia J. Y. Wong (Singapore) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 145, No. 1, 1--12 (2003; Zbl 1044.39013) Full Text: DOI
Yan, Xing-Xue; Li, Wan-Tong Global attractivity in the recursive sequence \(x_{n+1}=(\alpha-\beta x_{n})/(\gamma-x_{n-1})\). (English) Zbl 1030.39024 Appl. Math. Comput. 138, No. 2-3, 415-423 (2003). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A12 39B05 37D45 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 138, No. 2--3, 415--423 (2003; Zbl 1030.39024) Full Text: DOI