zbMATH — the first resource for mathematics

Witten triples and the Seiberg-Witten equations on a complex surface. (English) Zbl 1096.14038
The paper generalizes and unifies a type of Kobayashi-Hitchin correspondence that identifies irreducible Seiberg-Witten solutions on a complex surface with stable Witten triples. Previously perturbations of the forms \(2\pi i\beta^+, ({\overline{\eta}}-\eta)/2\) have been separately considered by Witten, Okonek-Teleman, Biquard et al, where \(\beta\) is a real 2-form of type \((1,1)\) and \(\eta\) is a holomorphic 2-form.
In the paper under review, the author combines them together and examines the Seiberg-Witten equations under a perturbation of the form \(2\pi i\beta^+ + ({\overline{\eta}}-\eta)/2\). Then an irreducible Seiberg-Witten solution, up to gauge equivalence, corresponds to a unique equivalence class of Witten (poly) stable triple consisting of a line bundle and two bundle homomorphisms. Moreover, if the metric on the complex surface is Kähler, the correspondence is is shown to be the set-theoretical support of an isomorphism of real analytic spaces.
14J80 Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants)
Full Text: DOI
[1] E. Arbarello M. Cornalba P. A. Griffiths J. Harris Geometry of Algebraic Curves. Vol. I (Springer-Verlag, New York, 1985). · Zbl 0559.14017
[2] D. Banfield The Geometry of Coupled Equations in Gauge Theory, Ph. D. thesis, University of Oxford (1996).
[3] W. Barth C. Peters A. Van de Ven Compact Complex Surfaces (Springer-Verlag, Berlin, 1984).
[4] Biquard, Les équations de Seiberg-Witten sur une surface complexe non kählérienne, Comm. Anal. Geom. 6 (1) pp 173– (1990)
[5] Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1) pp 1– (1990) · Zbl 0717.53075
[6] Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom. 33 (1) pp 169– (1991) · Zbl 0697.32014
[7] Brussee, The canonical class and the C properties of Kähler surfaces, New York J. Math. 2 pp 103– (1996) · Zbl 0881.53057
[8] Bryan, The multi-monopole equations for Kähler surfaces, Turkish J. Math. 20 (1) pp 119– (1996) · Zbl 0873.53049
[9] M. Dürr Seiberg-Witten Theory and the C -classification of Complex Surfaces, Ph. D. thesis, Zürich (2002).
[10] M. Dürr Fundamental groups of elliptic fibrations and the invariance of the plurigenera for surfaces with odd first Betti number, preprint (2003).
[11] Fujiki, Projectivity of the space of divisors on a normal compact complex space, Publ. Res. Inst. Math. Sci. 18 (3) pp 1163– (1982) · Zbl 0547.32006
[12] Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 pp 485– (1984) · Zbl 0523.53059
[13] Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (2) pp 257– (1997) · Zbl 0876.53015
[14] P. A. Griffiths J. Harris Principles of Algebraic Geometry. · Zbl 0408.14001
[15] J. L. Kazdan F. W. Warner Curvature functions for compact 2-manifolds. Ann. of Math. (2) 99 14 47 1974 · Zbl 0273.53034
[16] Kronheimer, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (6) pp 797– (1994) · Zbl 0851.57023
[17] M. Lübke A. Teleman The Kobayashi-Hitchin Correspondence (World Scientific Publishing Co., River Edge, NJ, 1995). · Zbl 0849.32020
[18] M. Lübke A. Teleman The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, preprint (2003).
[19] P. Lupascu Seiberg-Witten Equation and Complex Surfaces, Ph. D. thesis, Zürich (1998).
[20] Lupascu, The abelian vortex equations on Hermitian manifolds, Math. Nachr. 230 pp 99– (2001) · Zbl 1018.32014
[21] Mundet i Riera, A Hitchin-Kobayashi correspondence for Kähler fibrations, J. Reine Angew. Math. 528 pp 41– (2000)
[22] Okonek, The coupled Seiberg-Witten equations, vortices, and moduli spaces of stable pairs, Internat. J. Math. 6 (6) pp 893– (1995) · Zbl 0846.57013
[23] Okonek, Les invariants de Seiberg-Witten et la conjecture de Van de Ven, C. R. Acad. Sci. Paris Sr. I Math. 321 (4) pp 457– (1995)
[24] Okonek, Seiberg-Witten invariants and rationality of complex surfaces, Math. Z. 225 (1) pp 139– (1997) · Zbl 0883.57022
[25] Ch. Okonek A. Teleman Seiberg-Witten invariants for 4-manifolds with b + = 0, in: Complex Analysis and Algebraic Geometry, edited by Thomas Peternell and Frank-Olaf Schreyer (de Gruyter, Berlin, 2000), pp. 347-357.
[26] Seimiya, Kobayashi-Hitchin correspondence for perturbed Seiberg-Witten equations, Tokyo J. Math. 21 (1) pp 83– (1998) · Zbl 0922.32016
[27] Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (2) pp 221– (1995) · Zbl 0854.57020
[28] E. Witten Monopoles and four-manifolds. Math. Res. Lett. 1 6 769 796 1994 · Zbl 0867.57029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.