# zbMATH — the first resource for mathematics

Bound sets approach to boundary value problems for vector second-order differential inclusions. (English) Zbl 1177.34015
The paper deals with the second-order boundary value problem
$\ddot x(t)\in F(t,x(t),\dot x(t))\quad \text{for a.a.}\;t\in J, x\in S, (1)$ where $$J=[t_0,t_1]$$ is a compact interval, $$F: J\times \mathbb{R}^n\times \mathbb{R}^n \multimap \mathbb{R}^n$$ is an upper-Carathéodory mapping and $$S$$ is a subset of $$AC^1(J,\mathbb{R}^n)$$. The authors develop a continuation principle for the solvability of (1) using fixed point index arguments. The main assumption which yields the possibility to apply the continuation principle is the transversality condition which is guaranted here by means of Liapunov-like bounding functions. In addition, for the Floquet semi-linear problem
$\ddot x(t)+A(t)\dot x(t)+B(t)x(t)\in F(t,x(t),\dot x(t))\quad \text{for a.a.}\;t\in J,$
$x(t_1)=Mx(t_0),\quad \dot x(t_1)=N\dot x(t_0),$ where $$A,B:J\to \mathbb{R}^n\times \mathbb{R}^n$$ are integrable matrix functions and $$M$$ and $$N$$ are real $$n\times n$$ matrices with $$M$$ non-singular, a viability result will be obtained by means of a bound sets technique.

##### MSC:
 34A60 Ordinary differential inclusions 34B15 Nonlinear boundary value problems for ordinary differential equations 47H04 Set-valued operators 47N20 Applications of operator theory to differential and integral equations
Full Text:
##### References:
 [1] Andres, J., Topological principles for ordinary differential equations, (), 1-101 [2] Andres, J.; Górniewicz, L., () [3] Andres, J.; Malaguti, L.; Taddei, V., Floquet boundary value problems for differential inclusions: A bound sets approach, Z. anal. anwend., 20, 709-725, (2001) · Zbl 0986.34012 [4] Andres, J.; Malaguti, L.; Taddei, V., Bounded solutions of Carathéodory differential inclusions: A bound sets approach, Abstr. appl. anal., 9, 547-571, (2003) · Zbl 1036.34011 [5] Andres, J.; Malaguti, L.; Taddei, V., A bounding functions approach to multivalued boundary value problems, Dynam. systems appl., 16, 37-48, (2007) · Zbl 1126.34010 [6] Andres, J.; Sanchez, L., A note on vector boundary value problems, Int. J. non-linear differential equations, TMA, 3, 1-2, 49-58, (1997) [7] Aubin, J.-P.; Cellina, A., Differential inclusions, (1984), Springer Berlin [8] Aubin, J.-P.; Frankowska, H., Set-valued analysis, (1990), Birkhäuser Basel [9] Augustynowicz, A.; Dzedzej, Z.; Gelman, B.D., The solution set to BVP for some functional-differential inclusions, Set-valued anal., 6, 257-263, (1998) · Zbl 0931.34046 [10] Bader, R.; Kryszewski, W., Fixed-point index for compositions of set-valued maps with proximally $$\infty$$-connected values on arbitrary ANR’s, Set-valued anal., 2, 458-480, (1994) · Zbl 0846.55001 [11] Bebernes, J.W., A simple alternative problem for finding periodic solutions of second order ordinary differential systems, Proc. amer. math. soc., 42, 121-127, (1974) · Zbl 0286.34055 [12] Bebernes, J.; Schmitt, K., Periodic boundary value problems for systems of second order differential equations, J. differential equations, 13, 32-47, (1973) · Zbl 0253.34020 [13] Borsuk, K., Theory of retracts, Monografie matematyczne, vol. 44, (1967), PWN Warsaw · Zbl 0153.52905 [14] De Blasi, F.S.; Pianigiani, G., Solution sets of boundary value problems for nonconvex differential inclusions, Topol. methods nonlinear anal., 1, 303-314, (1993) · Zbl 0785.34018 [15] Deimling, K., Multivalued differential equations, (1992), Walter de Gruyter Berlin · Zbl 0760.34002 [16] Erbe, L.; Krawcewicz, W., Nonlinear boundary value problems for differential inclusions $$y'' \in F(t, y, y^\prime)$$, Ann. polon. math., 54, 195-226, (1991) · Zbl 0731.34078 [17] Erbe, L.; Palamides, P.K., Boundary value problems for second order differential systems, J. math. anal. appl., 127, 80-92, (1987) · Zbl 0635.34017 [18] Erbe, L.; Tisdell, Ch.; Wong, P., On systems of boundary value problems for differential inclusions, Acta math. sinica, 23, 549-556, (2007) · Zbl 1126.34012 [19] Fabry, C.; Habets, P., The Picard boundary value problem for nonlinear second order vector differential equations, J. differential equations, 42, 186-198, (1981) · Zbl 0439.34018 [20] Frigon, M., Boundary and periodic value problems for systems of nonlinear second order differential equations, Topol. methods nonlinear anal., 1, 259-274, (1993) · Zbl 0790.34022 [21] Frigon, M., Théorèmes d’existence de solutions d’inclusions différentialles, (), 51-87 · Zbl 0834.34021 [22] Gaines, R.; Mawhin, J., Coincidence degree and nonlinear differential equations, (1977), Springer Berlin · Zbl 0339.47031 [23] Gasiński, L.; Papageorgiou, N.S., Nonlinear second-order multivalued boundary value problems, Proc. Indian acad. sci. math. sci., 113, 293-319, (2003) · Zbl 1052.34022 [24] Górniewicz, L., Topological fixed point theory of multivalued mappings, (1999), Kluwer Dordrecht · Zbl 0937.55001 [25] Habets, P.; Nkashama, M.N., On periodic solutions of nonlinear second order vector differential equations, Proc. R. soc. edinb., sect. A, math., 104, 1-2, 107-125, (1986) · Zbl 0626.34040 [26] Halidias, N.; Papageorgiou, N.S., Existence and relaxation results for nonlinear second order multivalued boundary value problems in $$R^n$$, J. differential equations, 147, 123-154, (1998) · Zbl 0912.34020 [27] Halidias, N.; Papageorgiou, N.S., Existence of solutions for quasilinear second order differential inclusions with nonlinear boundary conditions, J. comput. appl. math., 113, 51-64, (2000) · Zbl 0941.34008 [28] Hu, S.; Papageorgiou, N.S., () [29] Hu, S.; Papageorgiu, N.S., () [30] Kandilakis, D.; Papageorgiou, N.S., Existence theorems for nonlinear boundary value problems for second order differential inclusions, J. differential equations, 132, 107-125, (1996) · Zbl 0859.34011 [31] Knobloch, H., On the existence of periodic solutions of second order vector differential equations, J. differential equations, 9, 67-85, (1971) · Zbl 0211.11801 [32] Kyritsi, S.; Matzakos, N.; Papageorgiou, N.S., Nonlinear boundary value problems for second order differential inclusions, Czechoslovak math. J., 55, 545-579, (2005) · Zbl 1081.34020 [33] Mawhin, J., Boundary value problems for nonlinear second order vector differential equations, J. differential equations, 16, 257-269, (1974) · Zbl 0301.34019 [34] Mawhin, J., The bernstein – nagumo problem and two-point boundary value problems for ordinary differential equations, J. coll. math soc. J. bolyai, 30, 709-740, (1981) · Zbl 0497.34020 [35] Miklaszewski, D., The two-point problem for nonlinear ordinary differential equations and differential inclusions, Univ. iagell acta math., 36, 127-132, (1998) · Zbl 1002.34011 [36] Palmucci, M.; Papalini, F., Periodic and boundary value problems for second order differential inclusions, J. appl. math. stoch. anal., 14, 161-182, (2001) · Zbl 1014.34009 [37] Schmitt, K., Periodic solutions of systems of second order differential equations, J. differential equations, 11, 180-192, (1972) · Zbl 0228.34023 [38] Taddei, V.; Zanolin, F., Bound sets and two-points boundary value problems for second order differential equations, Georgian math. J., 14, 2, 385-402, (2007), (special issue dedicated to 70th birthday of Prof. I. Kiguradze) · Zbl 1133.34013 [39] Vrabie, I.I., Compactness methods for nonlinear evolutions, (1990), Longman House Burn Mill, Harlow · Zbl 0842.47040 [40] Yosida, K., Functional analysis, (1980), Springer Berlin · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.