Schäfer, Ingo; Kempfle, Siegmar Impulse responses of fractional damped systems. (English) Zbl 1097.70016 Nonlinear Dyn. 38, No. 1-4, 61-68 (2004). Summary: Considered are systems of single-mass oscillators with different fractional damping behaviour. Similar to the classical model, where the damping terms are represented by first derivatives, the eigensystem can be used to decompose the fractional system in frequency domain, if mass, stiffness and damping matrices are linearly dependent. The solution appears as a linear combination of single-mass oscillators. This is true even in the general case such that stability and causality are insured by the same argumentation as used in the linearly dependent case. Cited in 13 Documents MSC: 70J35 Forced motions in linear vibration theory 26A33 Fractional derivatives and integrals Keywords:single-mass oscillators; eigensystem × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Kempfle, S., Schäfer, I., and Beyer, H., ?Fractional calculus via functional calculus: Theory and applications?, Nonlinear Dynamics29, 2002, 99-127. · Zbl 1026.47010 · doi:10.1023/A:1016595107471 [2] Kempfle, S. and Beyer, H., ?The scope of a functional calculus approach to fractional differential equations?, in Progress in Analysis (Proceedings of ISAAC?01), World Scientific, Singapore, 2003, pp. 69-81. [3] Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, University Press, Princeton, New Jersey, 1971. · Zbl 0232.42007 [4] Walter, W., Einführung in die Theorie der Distributionen. 3. Aufl. Bibliographisches Institut Mannheim, Germany, 1994. [5] Gel?fand, I. M. and Shilov, G. E., Generalized Functions, Vol. 1. Academic Press, New York, 1964. [6] Grubb, G., ?Pseudodifferential boundary problems and applications?, Deutsche Mathematiker Vereinigung, Jahresbericht99(3), 1997, 110-121. · Zbl 0873.35117 [7] Kempfle, S. and Schäfer, I., ?Fractional differential equations and initial conditions?, Fractional Calculus & Applied Analysis3(4), 2000, 387-400. · Zbl 1042.34014 [8] Beyer, H. and Kempfle, S., ?Definition of physically consistent damping laws with fractional derivatives?, Zentralblatt für angewandte Mathematik und Mechanik75(8), 1995, 623-635. · Zbl 0865.70014 · doi:10.1002/zamm.19950750820 [9] Kempfle, S. and Beyer, H., ?Global and causalsolutions of fractional differential equations?, in Proceedings of the 21st International Workshop on Transform Methods & Special Functions, Varna?96,IMI-BAS, Sofia, Bulgaria, P. Rusev, I. Dimovski, and V. Kiryakowa (eds.), 1998, pp. 210-226. · Zbl 0923.34007 [10] Bathe, K. J. and Wilson, E., Numerical Methods in Finite Element Analysis, Prentice Hall, New Jersey, 1976. · Zbl 0387.65069 [11] Schmidt, N., ?Impulsantworten von fraktional gedämpften Zwei- und Dreimassenschwingern?, Studienarbeit, UniBwH, Hamburg, Germany, 2003 [in German]. [12] Conway, J. B., Functions of One Complex Variable, Springer-Verlag, New York, 1978. · Zbl 0369.76003 [13] Henrici, P., Applied and Computational Complex Analysis, Vol. 1, Wiley, New York, 1974. · Zbl 0313.30001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.