# zbMATH — the first resource for mathematics

Dynamics of a rigid rotor linear/nonlinear bearings system subject to rotating unbalance and base excitations. (English) Zbl 1269.70022
Summary: Rotating machinery support excitations can occur if a machine is installed on a base prone to ground motions or on-board moving systems such as ships and aircraft. This paper presents a formulation for the dynamic analysis of rigid rotors subject to base excitations plus mass imbalance. The formulation allows for six motions at the machine base and takes into account the linear/nonlinear spring characteristics of the supporting bearings. Equations of motion are derived using Lagrange’s equations. For rotor-linear bearing systems subject to mass imbalance plus harmonic excitations along or around lateral directions, analytical solutions for equations of motion are derived and analytical results in the time domain are compared with their counterparts obtained by numerical integration using the Runge-Kutta method and typical agreement is obtained. The system natural frequencies as affected by rotor speed are obtained using the QR algorithm using the DAMRO-1 program and compared with those obtained by MATLAB and excellent agreement is obtained. The frequency response (maximum amplitude of vibrations against the base excitation frequency) is characterized by peaks at natural frequencies of the rotating gyroscopic system. This necessitates extreme precaution when we design such rotating systems that are prone to base motions and mass imbalance. For systems with bearing cubic nonlinearity, results are obtained by numerical integration and discussed with regards to the time domain, fast Fourier transform (FFT) and PoincarĂ© map. Periodic and quasi-periodic disk/bearings motions are observed. For systems with support cubic nonlinearity and subject to mass imbalance and base excitation, the FFT of disk horizontal and vertical vibrations is marked with sum and difference tones, $$\pm nf_{b} \pm f_{s}$$ ($$n + m$$ is always odd) where $$f_{s}$$ is the rotating unbalance frequency and $$f_{b}$$ is base excitation frequency.

##### MSC:
 70J35 Forced motions in linear vibration theory 70K40 Forced motions for nonlinear problems in mechanics
DAMRO-1; Matlab
Full Text:
##### References:
 [1] Asmis, G.J.K., ASME/CSME Pressure Vessels and Piping Conference [2] Adiletta, G., Nonlinear Dynamics 10 pp 251– (1996) · doi:10.1007/BF00045106 [3] Adiletta, G., Nonlinear Dynamics 11 pp 37– (1996) · doi:10.1007/BF00045050 [4] Bachschmid, N., IMechE C 432 (25) pp 591– (1992) [5] Chang-Jiang, C., Mechanism and Machine Theory 42 pp 312– (2007) · Zbl 1331.37126 · doi:10.1016/j.mechmachtheory.2006.03.007 [6] Chen, H.-H., Journal of Sound and Vibration 259 pp 541– (2003) · Zbl 1237.70093 · doi:10.1006/jsvi.2002.5088 [7] Doughty, S., Mechanism and Machine Theory 36 pp 833– (2001) · Zbl 1140.70431 · doi:10.1016/S0094-114X(01)00024-6 [8] El-Saeidy, F.M.A., Journal of the Acoustical Society of America 89 (6) pp 2766– (1991) · doi:10.1121/1.400716 [9] El-Saeidy, F.M.A., DAMRO-1: A General Purpose Finite Element Program (1993) [10] El-Saeidy, F.M.A., Journal of Vibration and Control 4 pp 541– (1998) · doi:10.1177/107754639800400503 [11] El-Saeidy, F.M.A., Journal of the Acoustical Society of America 107 (2) pp 851– (2000) · doi:10.1121/1.428360 [12] El-Saeidy, F.M.A., Nonlinear Dynamics 21 pp 377– (2000) · Zbl 1047.74538 · doi:10.1023/A:1008394724485 [13] El-Saeidy, F.M.A., Computer Modeling in Engineering and Sciences 1 (3) pp 33– (2000) [14] El-Saeidy, F.M.A., Journal of the Acoustical Society of America 110 pp 225– (2001) · doi:10.1121/1.1360237 [15] Ganiev, R.F., Journal of International Applied Mechanics 8 pp 43– (1972) [16] Gash, R., Journal of Sound and Vibration 47 (1) pp 53– (1976) · Zbl 0336.73031 · doi:10.1016/0022-460X(76)90407-7 [17] Gash, R., Journal of Sound and Vibration 93 (4) pp 549– (1984) · doi:10.1016/0022-460X(84)90423-1 [18] Ge, Z.M., AIAA Journal of Guidance and Control 15 pp 1034– (1992) · doi:10.2514/3.20940 [19] Ge, Z.M., Journal of Sound and Vibration 194 pp 107– (1996) · doi:10.1006/jsvi.1996.0348 [20] Hori, Y., IMechE C 318 (88) pp 1– (1988) [21] Hori, Y., ASME Journal of Vibration and Acoustics 112 pp 161– (1990) · doi:10.1115/1.2930108 [22] Ishida, Y., 2000, Stability of Gyroscopic Systems, Guran, A., et al. (ed), World Scientific, Singapore, pp. 103-191. [23] Ishida, Y., ASME Journal of Vibration and Acoustics 112 pp 288– (1990) · doi:10.1115/1.2930507 [24] Ishida, Y., Nonlinear Dynamics 4 pp 413– (1993) · doi:10.1007/BF00053689 [25] Kim, K.B., Random Vibration of Rotating Machines Under Earthquake Excitation, DSc Thesis (1986) [26] Kramer, E., Dynamics of Rotors and Foundations (1993) · doi:10.1007/978-3-662-02798-1 [27] Kuz’ma, V.M., Journal of International Applied Mechanics 16 pp 822– (1980) [28] Lee, A., International Journal of Mechanical Science 35 pp 479– (1993) · Zbl 0775.73146 · doi:10.1016/0020-7403(93)90037-U [29] Matlab, 2007, http://www.mathworks.com.au . [30] Sakata, M., Journal of Sound and Vibration 184 pp 871– (1995) · Zbl 1055.74534 · doi:10.1006/jsvi.1995.0350 [31] Samali, B., ASCE Journal of Engineering Mechanics 122 pp 550– (1986) · doi:10.1061/(ASCE)0733-9399(1986)112:6(550) [32] Soni, A., Acoustics, Stress and Reliability in Design 105 pp 449– (1983) · doi:10.1115/1.3269127 [33] Suarez, L.E., Earthquake Engineering and Structural Dynamics 21 pp 21– (1992) · doi:10.1002/eqe.4290210102 [34] Subbiah, R., IMechE C 280 (88) pp 635– (1988) [35] Timoshenko, S., Vibration Problems in Engineering (1955) · JFM 63.1305.03 [36] Yamamoto, T., Bulletin of JSME 18 pp 965– (1975) · doi:10.1299/jsme1958.18.965 [37] Yamamoto, T., Bulletin of JSME 24 pp 192– (1981) · doi:10.1299/jsme1958.24.192 [38] Ziegler, H., Principle of Structural Ability (1968) [39] Zu, J.W., ASME Nonlinear Dynamics and Control 91 pp 191– (1996) [40] Zu, J.W., ASME Journal of Engineering for Gas Turbine and Power 120 pp 751– (1998) · doi:10.1115/1.2818463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.