Tamilselvan, K.; Kanna, T.; Govindarajan, A. On the integrability aspects of nonparaxial nonlinear Schrödinger equation and the dynamics of solitary waves. (English) Zbl 1448.35483 Phys. Lett., A 384, No. 27, Article ID 126729, 8 p. (2020). MSC: 35Q55 35C08 34M55 PDF BibTeX XML Cite \textit{K. Tamilselvan} et al., Phys. Lett., A 384, No. 27, Article ID 126729, 8 p. (2020; Zbl 1448.35483) Full Text: DOI
Xie, Yingying; Yang, Zhaoyu; Li, Lingfei New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation. (English) Zbl 1404.81101 Phys. Lett., A 382, No. 36, 2506-2514 (2018). MSC: 81Q05 35Q55 35C08 PDF BibTeX XML Cite \textit{Y. Xie} et al., Phys. Lett., A 382, No. 36, 2506--2514 (2018; Zbl 1404.81101) Full Text: DOI
Zhao, Yun-Mei New exact solutions for a higher-order wave equation of KdV type using the multiple simplest equation method. (English) Zbl 1442.35411 J. Appl. Math. 2014, Article ID 848069, 13 p. (2014). MSC: 35Q53 35C05 35C07 PDF BibTeX XML Cite \textit{Y.-M. Zhao}, J. Appl. Math. 2014, Article ID 848069, 13 p. (2014; Zbl 1442.35411) Full Text: DOI
Rui, Weiguo Exact solutions of a high-order nonlinear wave equation of Korteweg-de Vries type under newly solvable conditions. (English) Zbl 07022931 Abstr. Appl. Anal. 2014, Article ID 714214, 11 p. (2014). MSC: 35 65 PDF BibTeX XML Cite \textit{W. Rui}, Abstr. Appl. Anal. 2014, Article ID 714214, 11 p. (2014; Zbl 07022931) Full Text: DOI
Lohrasbi, Alireza; Pirooz, Moharram D. Navier Stokes model of solitary wave collision. (English) Zbl 1354.76030 Chaos Solitons Fractals 68, 139-150 (2014). MSC: 76B25 76M10 PDF BibTeX XML Cite \textit{A. Lohrasbi} and \textit{M. D. Pirooz}, Chaos Solitons Fractals 68, 139--150 (2014; Zbl 1354.76030) Full Text: DOI
Rui, Weiguo The integral bifurcation method combined with factoring technique for investigating exact solutions and their dynamical properties of a generalized Gardner equation. (English) Zbl 1306.35114 Nonlinear Dyn. 76, No. 2, 1529-1542 (2014). MSC: 35Q53 35B32 35C08 PDF BibTeX XML Cite \textit{W. Rui}, Nonlinear Dyn. 76, No. 2, 1529--1542 (2014; Zbl 1306.35114) Full Text: DOI
He, Yinghui New exact solutions for a higher order wave equation of KdV type using multiple \(G^\prime / G\)-expansion methods. (English) Zbl 1291.76240 Adv. Math. Phys. 2014, Article ID 148132, 9 p. (2014). MSC: 76M25 76B15 35Q53 35C05 PDF BibTeX XML Cite \textit{Y. He}, Adv. Math. Phys. 2014, Article ID 148132, 9 p. (2014; Zbl 1291.76240) Full Text: DOI
Wu, Xianbin; Rui, Weiguo; Hong, Xiaochun A generalized KdV equation of neglecting the highest-order infinitesimal term and its exact traveling wave solutions. (English) Zbl 1291.35316 Abstr. Appl. Anal. 2013, Article ID 656297, 15 p. (2013). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{X. Wu} et al., Abstr. Appl. Anal. 2013, Article ID 656297, 15 p. (2013; Zbl 1291.35316) Full Text: DOI
Lin, Guo-Dong; Gao, Yi-Tian; Wang, Lei; Meng, De-Xin; Yu, Xin Elastic-inelastic-interaction coexistence and double Wronskian solutions for the Whitham-Broer-Kaup shallow-water-wave model. (English) Zbl 1419.76089 Commun. Nonlinear Sci. Numer. Simul. 16, No. 8, 3090-3096 (2011). MSC: 76B15 PDF BibTeX XML Cite \textit{G.-D. Lin} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 8, 3090--3096 (2011; Zbl 1419.76089) Full Text: DOI
Triki, Houria; Hayat, T.; Aldossary, Omar M.; Biswas, Anjan Solitary wave and shock wave solutions to a second order wave equation of Korteweg-de Vries type. (English) Zbl 1219.35260 Appl. Math. Comput. 217, No. 21, 8852-8855 (2011). MSC: 35Q53 35C08 35A22 PDF BibTeX XML Cite \textit{H. Triki} et al., Appl. Math. Comput. 217, No. 21, 8852--8855 (2011; Zbl 1219.35260) Full Text: DOI
Marinakis, V. Higher-order equations of the KdV type are integrable. (English) Zbl 1206.35220 Adv. Math. Phys. 2010, Article ID 329586, 5 p. (2010). MSC: 35Q53 35Q35 37K05 PDF BibTeX XML Cite \textit{V. Marinakis}, Adv. Math. Phys. 2010, Article ID 329586, 5 p. (2010; Zbl 1206.35220) Full Text: DOI EuDML
Li, Jibin; Chen, Guanrong On nonlinear wave equations with breaking loop-solutions. (English) Zbl 1188.35160 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 2, 519-537 (2010). MSC: 35Q51 34A05 34C37 PDF BibTeX XML Cite \textit{J. Li} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 2, 519--537 (2010; Zbl 1188.35160) Full Text: DOI
Rui, Weiguo; Long, Yao; He, Bin; Li, Zhenyang Integral bifurcation method combined with computer for solving a higher order wave equation of KdV type. (English) Zbl 1182.65161 Int. J. Comput. Math. 87, No. 1, 119-128 (2010). MSC: 65M70 35Q51 35Q53 PDF BibTeX XML Cite \textit{W. Rui} et al., Int. J. Comput. Math. 87, No. 1, 119--128 (2010; Zbl 1182.65161) Full Text: DOI
Rui, Weiguo; Long, Yao; He, Bin Some new travelling wave solutions with singular or nonsingular character for the higher order wave equation of KdV type (III). (English) Zbl 1167.34006 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 11, 3816-3828 (2009). MSC: 34B40 34A05 35Q53 35Q51 PDF BibTeX XML Cite \textit{W. Rui} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 11, 3816--3828 (2009; Zbl 1167.34006) Full Text: DOI
Li, Jibin Exact explicit peakon and periodic cusp wave solutions for several nonlinear wave equations. (English) Zbl 1178.34002 J. Dyn. Differ. Equations 20, No. 4, 909-922 (2008). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A05 34C25 35L05 35Q51 34C37 PDF BibTeX XML Cite \textit{J. Li}, J. Dyn. Differ. Equations 20, No. 4, 909--922 (2008; Zbl 1178.34002) Full Text: DOI
Long, Yao; Li, Ji-Bin; Rui, Wei-Guo; He, Bin Travelling wave solutions for a second order wave equation of KdV type. (English) Zbl 1231.35035 Appl. Math. Mech., Engl. Ed. 28, No. 11, 1455-1465 (2007). MSC: 35C07 35Q53 37K40 PDF BibTeX XML Cite \textit{Y. Long} et al., Appl. Math. Mech., Engl. Ed. 28, No. 11, 1455--1465 (2007; Zbl 1231.35035) Full Text: DOI
Li, Jibin Dynamical understanding of loop soliton solution for several nonlinear wave equations. (English) Zbl 1139.35076 Sci. China, Ser. A 50, No. 6, 773-785 (2007). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35L70 35Q53 35Q51 35C05 PDF BibTeX XML Cite \textit{J. Li}, Sci. China, Ser. A 50, No. 6, 773--785 (2007; Zbl 1139.35076) Full Text: DOI
Li, Jibin; Wu, Jianhong; Zhu, Huaiping Traveling waves for an integrable higher order KdV type wave equations. (English) Zbl 1192.37100 Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, No. 8, 2235-2260 (2006). MSC: 37K40 34C05 35Q53 76B15 76B25 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 16, No. 8, 2235--2260 (2006; Zbl 1192.37100) Full Text: DOI
Long, Yao; He, Bin; Rui, Weiguo; Chen, Can Compacton-like and kink-like waves for a higher-order wave equation of Korteweg-de Vries type. (English) Zbl 1134.35096 Int. J. Comput. Math. 83, No. 12, 959-971 (2006). Reviewer: Michal Marvan (Opava) MSC: 35Q53 37K40 34C05 PDF BibTeX XML Cite \textit{Y. Long} et al., Int. J. Comput. Math. 83, No. 12, 959--971 (2006; Zbl 1134.35096) Full Text: DOI
Khuri, S. A. Soliton and periodic solutions for higher order wave equations of KdV type (I). (English) Zbl 1070.35062 Chaos Solitons Fractals 26, No. 1, 25-32 (2005). MSC: 35Q53 37K40 PDF BibTeX XML Cite \textit{S. A. Khuri}, Chaos Solitons Fractals 26, No. 1, 25--32 (2005; Zbl 1070.35062) Full Text: DOI
Long, Yao; Rui, Weiguo; He, Bin Travelling wave solutions for a higher order wave equations of KdV type. I. (English) Zbl 1069.35075 Chaos Solitons Fractals 23, No. 2, 469-475 (2005). MSC: 35Q53 37K40 PDF BibTeX XML Cite \textit{Y. Long} et al., Chaos Solitons Fractals 23, No. 2, 469--475 (2005; Zbl 1069.35075) Full Text: DOI
Tzirtzilakis, E.; Marinakis, V.; Apokis, C.; Bountis, T. Soliton-like solutions of higher order wave equations of the Korteweg-de Vries type. (English) Zbl 1060.35127 J. Math. Phys. 43, No. 12, 6151-6165 (2002). MSC: 35Q53 35B35 35Q51 37K40 PDF BibTeX XML Cite \textit{E. Tzirtzilakis} et al., J. Math. Phys. 43, No. 12, 6151--6165 (2002; Zbl 1060.35127) Full Text: DOI