Alduncin, Gonzalo Multidomain mixed variational analysis of transport flow through elastoviscoplastic porous media. (English) Zbl 1418.35244 Appl. Anal. 98, No. 12, 2252-2283 (2019). MSC: 35K61 35K87 35Q35 74F10 65N55 74C05 76S05 PDF BibTeX XML Cite \textit{G. Alduncin}, Appl. Anal. 98, No. 12, 2252--2283 (2019; Zbl 1418.35244) Full Text: DOI
Krejčí, Pavel; Rocca, Elisabetta; Sprekels, Jürgen Unsaturated deformable porous media flow with thermal phase transition. (English) Zbl 1386.76163 Math. Models Methods Appl. Sci. 27, No. 14, 2675-2710 (2017). MSC: 76S05 82B26 74G25 PDF BibTeX XML Cite \textit{P. Krejčí} et al., Math. Models Methods Appl. Sci. 27, No. 14, 2675--2710 (2017; Zbl 1386.76163) Full Text: DOI
Detmann, Bettina; Krejčí, Pavel; Rocca, Elisabetta Solvability of an unsaturated porous media flow problem with thermomechanical interaction. (English) Zbl 1364.76218 SIAM J. Math. Anal. 48, No. 6, 4175-4201 (2016). Reviewer: Vladimir Mityushev (Kraków) MSC: 76S05 35Q35 74F10 74F05 47J40 PDF BibTeX XML Cite \textit{B. Detmann} et al., SIAM J. Math. Anal. 48, No. 6, 4175--4201 (2016; Zbl 1364.76218) Full Text: DOI
Bukač, M. A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic material. (English) Zbl 1349.76934 J. Comput. Phys. 313, 377-399 (2016). MSC: 76Z05 74F10 76S05 92C35 PDF BibTeX XML Cite \textit{M. Bukač}, J. Comput. Phys. 313, 377--399 (2016; Zbl 1349.76934) Full Text: DOI
Bociu, Lorena; Guidoboni, Giovanna; Sacco, Riccardo; Webster, Justin T. Analysis of nonlinear poro-elastic and poro-visco-elastic models. (English) Zbl 1361.35139 Arch. Ration. Mech. Anal. 222, No. 3, 1445-1519 (2016). Reviewer: S. C. Rajvanshi (Chandigarh) MSC: 35Q35 76A10 76S05 76M10 PDF BibTeX XML Cite \textit{L. Bociu} et al., Arch. Ration. Mech. Anal. 222, No. 3, 1445--1519 (2016; Zbl 1361.35139) Full Text: DOI
Albers, Bettina; Krejčí, Pavel Unsaturated porous media flow with thermomechanical interaction. (English) Zbl 1338.76116 Math. Methods Appl. Sci. 39, No. 9, 2220-2238 (2016). MSC: 76S05 74N30 PDF BibTeX XML Cite \textit{B. Albers} and \textit{P. Krejčí}, Math. Methods Appl. Sci. 39, No. 9, 2220--2238 (2016; Zbl 1338.76116) Full Text: DOI arXiv
Su, Ning; Zhang, Li Existence for nonlinear evolution equations and application to degenerate parabolic equation. (English) Zbl 1442.35231 J. Appl. Math. 2014, Article ID 567241, 8 p. (2014). MSC: 35K61 35K90 35R20 47H05 47J05 PDF BibTeX XML Cite \textit{N. Su} and \textit{L. Zhang}, J. Appl. Math. 2014, Article ID 567241, 8 p. (2014; Zbl 1442.35231) Full Text: DOI
Rohan, Eduard; Shaw, Simon; Whiteman, John R. Poro-viscoelasticity modelling based on upscaling quasistatic fluid-saturated solids. (English) Zbl 1392.74037 Comput. Geosci. 18, No. 5, 883-895 (2014); erratum ibid. 18, No. 5, 897-898 (2014). MSC: 74F10 76S05 86A05 65N30 PDF BibTeX XML Cite \textit{E. Rohan} et al., Comput. Geosci. 18, No. 5, 883--895 (2014; Zbl 1392.74037) Full Text: DOI
Mikelić, Andro; Wheeler, Mary F. On the interface law between a deformable porous medium containing a viscous fluid and an elastic body. (English) Zbl 1257.35030 Math. Models Methods Appl. Sci. 22, No. 11, Article ID 1250031, 32 p. (2012). Reviewer: Alain Brillard (Riedisheim) MSC: 35B27 35Q35 35Q74 35Q86 74F10 76S05 PDF BibTeX XML Cite \textit{A. Mikelić} and \textit{M. F. Wheeler}, Math. Models Methods Appl. Sci. 22, No. 11, Article ID 1250031, 32 p. (2012; Zbl 1257.35030) Full Text: DOI
Trostorff, Sascha An alternative approach to well-posedness of a class of differential inclusions in Hilbert spaces. (English) Zbl 1245.34066 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 15, 5851-5865 (2012). MSC: 34G25 35F61 46N20 47J35 PDF BibTeX XML Cite \textit{S. Trostorff}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 15, 5851--5865 (2012; Zbl 1245.34066) Full Text: DOI arXiv
Owczarek, Sebastian Convergence of a monotonisation procedure for a non-monotone quasi-static model in poroplasticity. (English) Zbl 1195.35023 J. Math. Anal. Appl. 364, No. 2, 599-608 (2010). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 35A35 35B05 74C15 PDF BibTeX XML Cite \textit{S. Owczarek}, J. Math. Anal. Appl. 364, No. 2, 599--608 (2010; Zbl 1195.35023) Full Text: DOI
Barucq, Hélène; Madaune-Tort, Monique; Saint-Macary, Patrick Some existence-uniqueness results for a class of one-dimensional nonlinear Biot models. (English) Zbl 1068.35003 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 61, No. 4, 591-612 (2005). MSC: 35A05 74F10 PDF BibTeX XML Cite \textit{H. Barucq} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 61, No. 4, 591--612 (2005; Zbl 1068.35003) Full Text: DOI