×

zbMATH — the first resource for mathematics

Transcendental trace formulas for finite-gap potentials. (English. Russian original) Zbl 1256.81042
Theor. Math. Phys. 164, No. 1, 920-928 (2010); translation from Teor. Mat. Fiz. 164, No. 1, 108-118 (2010).
Summary: We show that formulas differing from classical analogues of rational trace formulas for algebraic-geometric potentials occur in the theory of finite-gap integration of spectral equations. The new formulas contain transcendental modular functions and hypergeometric series. They provide results in transcendental relations for theta functions.
MSC:
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
33C20 Generalized hypergeometric series, \({}_pF_q\)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
11F03 Modular and automorphic functions
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] L. A. Dickey, Solitons Equations and Hamiltonian Systems (Adv. Ser. Math. Phys., Vol. 26), World Scientific, Singapore (2003). · Zbl 1140.35012
[2] M. B-laszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer, Berlin (1998).
[3] Yu. V. Brezhnev, Russ. Math. Surveys, 57, 415–417 (2002). · Zbl 1098.34579 · doi:10.1070/RM2002v057n02ABEH000503
[4] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, Funct. Anal. Appl., 34, No. 2, 79–85 (2000). · Zbl 0978.58012 · doi:10.1007/BF02482405
[5] D. J. Kaup, Stud. Appl. Math., 62, 189–216 (1980).
[6] D. Cox, J. Little, and D. O’shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (3rd ed.), Springer, New York (2007). · Zbl 1118.13001
[7] N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970); English transl. (Transl. Math. Monogr., Vol. 79), Amer. Math. Soc., Providence, R. I. (1990).
[8] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York (1955). · Zbl 0064.06302
[9] I. M. Vinogradov, ed., Mathematics Encyclopedia [in Russian], Vol. 3, Sovetskaya Éntsiklopediya, Moscow (1982). · Zbl 0504.00049
[10] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 1, The Hypergeometric Function, Legendre Functions, McGraw-Hill, New York (1953). · Zbl 0051.30303
[11] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge (1996). · Zbl 0951.30002
[12] D. Mumford, Tata Lectures on Theta (Progr. Math., Vol. 28), Birkhäuser, Boston (1983).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.