Hu, Yingxiang; Li, Haizhong; Wei, Yong; Zhou, Tailong Contraction of surfaces in hyperbolic space and in sphere. (English) Zbl 1451.53128 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 172, 31 p. (2020). MSC: 53E99 53E10 53C40 PDF BibTeX XML Cite \textit{Y. Hu} et al., Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 172, 31 p. (2020; Zbl 1451.53128) Full Text: DOI
Li, Qi-Rui; Sheng, Weimin; Wang, Xu-Jia Asymptotic convergence for a class of fully nonlinear curvature flows. (English) Zbl 1434.53096 J. Geom. Anal. 30, No. 1, 834-860 (2020). MSC: 53E10 35K55 PDF BibTeX XML Cite \textit{Q.-R. Li} et al., J. Geom. Anal. 30, No. 1, 834--860 (2020; Zbl 1434.53096) Full Text: DOI
Bertini, Maria Chiara; Sinestrari, Carlo Volume preserving flow by powers of symmetric polynomials in the principal curvatures. (English) Zbl 06928360 Math. Z. 289, No. 3-4, 1219-1236 (2018). MSC: 53E10 53A07 35B40 PDF BibTeX XML Cite \textit{M. C. Bertini} and \textit{C. Sinestrari}, Math. Z. 289, No. 3--4, 1219--1236 (2018; Zbl 06928360) Full Text: DOI arXiv
Guilfoyle, Brendan; Klingenberg, Wilhelm Parabolic classical curvature flows. (English) Zbl 1404.53002 J. Aust. Math. Soc. 104, No. 3, 338-357 (2018). Reviewer: James P. Howard II (Columbia) MSC: 53A05 35K40 PDF BibTeX XML Cite \textit{B. Guilfoyle} and \textit{W. Klingenberg}, J. Aust. Math. Soc. 104, No. 3, 338--357 (2018; Zbl 1404.53002) Full Text: DOI arXiv
Andrews, Ben; Chen, Xuzhong Curvature flow in hyperbolic spaces. (English) Zbl 1371.53060 J. Reine Angew. Math. 729, 29-49 (2017). MSC: 53C44 PDF BibTeX XML Cite \textit{B. Andrews} and \textit{X. Chen}, J. Reine Angew. Math. 729, 29--49 (2017; Zbl 1371.53060) Full Text: DOI
Ivaki, Mohammad N. The planar Busemann-Petty centroid inequality and its stability. (English) Zbl 1335.52022 Trans. Am. Math. Soc. 368, No. 5, 3539-3563 (2016). MSC: 52A40 53C44 52A10 35K55 53A15 PDF BibTeX XML Cite \textit{M. N. Ivaki}, Trans. Am. Math. Soc. 368, No. 5, 3539--3563 (2016; Zbl 1335.52022) Full Text: DOI arXiv
Sinestrari, Carlo Convex hypersurfaces evolving by volume preserving curvature flows. (English) Zbl 1325.53087 Calc. Var. Partial Differ. Equ. 54, No. 2, 1985-1993 (2015). MSC: 53C44 35B40 PDF BibTeX XML Cite \textit{C. Sinestrari}, Calc. Var. Partial Differ. Equ. 54, No. 2, 1985--1993 (2015; Zbl 1325.53087) Full Text: DOI
Ivaki, Mohammad N. Convex bodies with pinched Mahler volume under the centro-affine normal flows. (English) Zbl 1323.53077 Calc. Var. Partial Differ. Equ. 54, No. 1, 831-846 (2015). MSC: 53C44 52A05 35K55 53A07 PDF BibTeX XML Cite \textit{M. N. Ivaki}, Calc. Var. Partial Differ. Equ. 54, No. 1, 831--846 (2015; Zbl 1323.53077) Full Text: DOI arXiv
McCoy, James A.; Mofarreh, Fatemah Y. Y.; Williams, Graham H. Fully nonlinear curvature flow of axially symmetric hypersurfaces with boundary conditions. (English) Zbl 1301.53064 Ann. Mat. Pura Appl. (4) 193, No. 5, 1443-1455 (2014). MSC: 53C44 PDF BibTeX XML Cite \textit{J. A. McCoy} et al., Ann. Mat. Pura Appl. (4) 193, No. 5, 1443--1455 (2014; Zbl 1301.53064) Full Text: DOI
Andrews, Ben; McCoy, James Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature. (English) Zbl 1277.53061 Trans. Am. Math. Soc. 364, No. 7, 3427-3447 (2012). Reviewer: Petre Stavre (Craiova) MSC: 53C44 53C21 58J35 PDF BibTeX XML Cite \textit{B. Andrews} and \textit{J. McCoy}, Trans. Am. Math. Soc. 364, No. 7, 3427--3447 (2012; Zbl 1277.53061) Full Text: DOI arXiv
Clutterbuck, J.; Schnürer, O. C. Stability of mean convex cones under mean curvature flow. (English) Zbl 1216.53058 Math. Z. 267, No. 3-4, 535-547 (2011). Reviewer: Shu-Yu Hsu (Chia-Yi) MSC: 53C44 35B35 PDF BibTeX XML Cite \textit{J. Clutterbuck} and \textit{O. C. Schnürer}, Math. Z. 267, No. 3--4, 535--547 (2011; Zbl 1216.53058) Full Text: DOI
Alessandroni, Roberta; Sinestrari, Carlo Convexity estimates for a nonhomogeneous mean curvature flow. (English) Zbl 1197.53080 Math. Z. 266, No. 1, 65-82 (2010). MSC: 53C44 PDF BibTeX XML Cite \textit{R. Alessandroni} and \textit{C. Sinestrari}, Math. Z. 266, No. 1, 65--82 (2010; Zbl 1197.53080) Full Text: DOI
Cabezas-Rivas, Esther; Sinestrari, Carlo Volume-preserving flow by powers of the \(m\)th mean curvature. (English) Zbl 1197.53082 Calc. Var. Partial Differ. Equ. 38, No. 3-4, 441-469 (2010). Reviewer: Jan Kurek (Lublin) MSC: 53C44 35K55 58J35 35B40 PDF BibTeX XML Cite \textit{E. Cabezas-Rivas} and \textit{C. Sinestrari}, Calc. Var. Partial Differ. Equ. 38, No. 3--4, 441--469 (2010; Zbl 1197.53082) Full Text: DOI arXiv
Schulze, Felix Convexity estimates for flows by powers of the mean curvature. (English) Zbl 1150.53024 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 5, No. 2, 261-277 (2006). Reviewer: Pascual Lucas Saorín (Murcia) MSC: 53C44 35B40 PDF BibTeX XML Cite \textit{F. Schulze}, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 5, No. 2, 261--277 (2006; Zbl 1150.53024) Full Text: EuDML