Chu, Wenchang Infinite series identities derived from the very well-poised \(\Omega\)-sum. (English) Zbl 1466.33004 Ramanujan J. 55, No. 1, 239-270 (2021). MSC: 33C20 65B10 PDF BibTeX XML Cite \textit{W. Chu}, Ramanujan J. 55, No. 1, 239--270 (2021; Zbl 1466.33004) Full Text: DOI OpenURL
Bowers, David Matthew; Küchle, Valentin A. B. Mathematical proof and genre theory. (English) Zbl 1453.00012 Math. Intell. 42, No. 2, 48-55 (2020). MSC: 00A35 PDF BibTeX XML Cite \textit{D. M. Bowers} and \textit{V. A. B. Küchle}, Math. Intell. 42, No. 2, 48--55 (2020; Zbl 1453.00012) Full Text: DOI OpenURL
Takahashi, Daisuke On the computation and verification of \(\pi\) using BBP-type formulas. (English) Zbl 07173683 Ramanujan J. 51, No. 1, 177-186 (2020). MSC: 65D20 11Y16 65Y20 PDF BibTeX XML Cite \textit{D. Takahashi}, Ramanujan J. 51, No. 1, 177--186 (2020; Zbl 07173683) Full Text: DOI OpenURL
Srivastava, H. M.; Vyas, Yashoverdhan; Fatawat, Kalpana Extensions of the classical theorems for very well-poised hypergeometric functions. (English) Zbl 1416.33015 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 367-397 (2019). MSC: 33C20 33C90 40A25 65B10 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 367--397 (2019; Zbl 1416.33015) Full Text: DOI arXiv OpenURL
Awad, Mohammed M.; Mohammed, Asmaa O.; Rakha, Medhat A.; Rathie, Arjun K. New series identities for \(\frac{1}{\Pi}\). (English) Zbl 1382.33005 Commun. Korean Math. Soc. 32, No. 4, 865-874 (2017). MSC: 33C05 33C20 33C70 PDF BibTeX XML Cite \textit{M. M. Awad} et al., Commun. Korean Math. Soc. 32, No. 4, 865--874 (2017; Zbl 1382.33005) Full Text: DOI OpenURL
Wei, Chuanan Several BBP-type formulas for \(\pi\). (English) Zbl 1316.65031 Integral Transforms Spec. Funct. 26, No. 5, 315-324 (2015). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11Y60 40A15 65B10 PDF BibTeX XML Cite \textit{C. Wei}, Integral Transforms Spec. Funct. 26, No. 5, 315--324 (2015; Zbl 1316.65031) Full Text: DOI OpenURL
Wei, Chuanan; Wang, Xiaoxia; Dai, Linlin Series expansions for \(1/\pi^m\) and \(\pi^m\). (English) Zbl 1409.11143 J. Math. Anal. Appl. 421, No. 2, 1247-1253 (2015). MSC: 11Y60 40A05 33C20 PDF BibTeX XML Cite \textit{C. Wei} et al., J. Math. Anal. Appl. 421, No. 2, 1247--1253 (2015; Zbl 1409.11143) Full Text: DOI arXiv OpenURL
Agarwal, Ravi P.; Agarwal, Hans; Sen, Syamal K. Birth, growth and computation of pi to ten trillion digits. (English) Zbl 1380.01012 Adv. Difference Equ. 2013, Paper No. 100, 59 p. (2013). MSC: 01A05 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Adv. Difference Equ. 2013, Paper No. 100, 59 p. (2013; Zbl 1380.01012) Full Text: DOI OpenURL
Wei, Chuanan; Gong, Dianxuan Extensions of Ramanujan’s two formulas for \(1/\pi\). (English) Zbl 1297.11151 J. Number Theory 133, No. 7, 2206-2216 (2013). MSC: 11Y60 33C20 PDF BibTeX XML Cite \textit{C. Wei} and \textit{D. Gong}, J. Number Theory 133, No. 7, 2206--2216 (2013; Zbl 1297.11151) Full Text: DOI arXiv OpenURL
Chu, Wenchang Dougall’s bilateral \(_{2}H_{2}\)-series and Ramanujan-like \(\pi\)-formulae. (English) Zbl 1233.33002 Math. Comput. 80, No. 276, 2223-2251 (2011). Reviewer: Chrysoula G. Kokologiannaki (Patras) MSC: 33C20 11Y60 40A25 65B10 PDF BibTeX XML Cite \textit{W. Chu}, Math. Comput. 80, No. 276, 2223--2251 (2011; Zbl 1233.33002) Full Text: DOI OpenURL
Mingari Scarpello, Giovanni; Ritelli, Daniele The hyperelliptic integrals and \(\pi \). (English) Zbl 1234.33011 J. Number Theory 129, No. 12, 3094-3108 (2009). Reviewer: Richard B. Paris (Dundee) MSC: 33C20 11Y60 33B15 33F05 PDF BibTeX XML Cite \textit{G. Mingari Scarpello} and \textit{D. Ritelli}, J. Number Theory 129, No. 12, 3094--3108 (2009; Zbl 1234.33011) Full Text: DOI arXiv Link OpenURL
Chong, Terence Tai-Leung The empirical quest for \(\pi \). (English) Zbl 1165.91453 Comput. Math. Appl. 56, No. 10, 2772-2778 (2008). MSC: 91B84 62M09 60F05 62F12 91B82 PDF BibTeX XML Cite \textit{T. T. L. Chong}, Comput. Math. Appl. 56, No. 10, 2772--2778 (2008; Zbl 1165.91453) Full Text: DOI OpenURL
Wagon, Stan Mathematics and Mathematica. (English) Zbl 1158.00303 Math. Intell. 29, No. 4, 51-61 (2007). MSC: 00A05 65Y15 68W01 PDF BibTeX XML Cite \textit{S. Wagon}, Math. Intell. 29, No. 4, 51--61 (2007; Zbl 1158.00303) Full Text: DOI OpenURL
Bailey, David H.; Crandall, Richard E. On the random character of fundamental constant expansions. (English) Zbl 1047.11073 Exp. Math. 10, No. 2, 175-190 (2001). Reviewer: Takao Komatsu (Hirosaki) MSC: 11K16 11J70 37A45 PDF BibTeX XML Cite \textit{D. H. Bailey} and \textit{R. E. Crandall}, Exp. Math. 10, No. 2, 175--190 (2001; Zbl 1047.11073) Full Text: DOI EuDML OpenURL
Bailey, David; Borwein, Peter; Plouffe, Simon On the rapid computation of various polylogarithmic constants. (English) Zbl 0879.11073 Math. Comput. 66, No. 218, 903-913 (1997). MSC: 11Y60 68Q25 PDF BibTeX XML Cite \textit{D. Bailey} et al., Math. Comput. 66, No. 218, 903--913 (1997; Zbl 0879.11073) Full Text: DOI OpenURL