Mason, James; Jack, Robert L.; Bruna, Maria Macroscopic behaviour in a two-species exclusion process via the method of matched asymptotics. (English) Zbl 07639934 J. Stat. Phys. 190, No. 3, Paper No. 47, 38 p. (2023). MSC: 60K35 82C22 35K51 PDF BibTeX XML Cite \textit{J. Mason} et al., J. Stat. Phys. 190, No. 3, Paper No. 47, 38 p. (2023; Zbl 07639934) Full Text: DOI arXiv OpenURL
Xue, Ling; Zhang, Min; Zhao, Kun; Zheng, Xiaoming Global stability under dynamic boundary conditions of a nonlinear PDE model arising from reinforced random walks. (English) Zbl 07634552 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106913, 14 p. (2023). MSC: 35Q92 35B35 PDF BibTeX XML Cite \textit{L. Xue} et al., Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106913, 14 p. (2023; Zbl 07634552) Full Text: DOI OpenURL
Granero-Belinchón, Rafael A nonlocal model describing tumor angiogenesis. (English) Zbl 07629246 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 227, Article ID 113180, 15 p. (2023). MSC: 35Q92 92C17 92C37 35B44 35A01 35A02 92-08 PDF BibTeX XML Cite \textit{R. Granero-Belinchón}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 227, Article ID 113180, 15 p. (2023; Zbl 07629246) Full Text: DOI arXiv OpenURL
Ojer, Jaume; López, Álvaro G.; Used, Javier; Sanjuán, Miguel A. F. A stochastic hybrid model with a fast concentration bias for chemotactic cellular attraction. (English) Zbl 07641661 Chaos Solitons Fractals 156, Article ID 111792, 8 p. (2022). MSC: 92-XX 82-XX PDF BibTeX XML Cite \textit{J. Ojer} et al., Chaos Solitons Fractals 156, Article ID 111792, 8 p. (2022; Zbl 07641661) Full Text: DOI OpenURL
Loy, N.; Hillen, T.; Painter, K. J. Direction-dependent turning leads to anisotropic diffusion and persistence. (English) Zbl 07629700 Eur. J. Appl. Math. 33, No. 4, 729-765 (2022). MSC: 35Q92 35Q20 92C17 46N60 92C37 PDF BibTeX XML Cite \textit{N. Loy} et al., Eur. J. Appl. Math. 33, No. 4, 729--765 (2022; Zbl 07629700) Full Text: DOI arXiv OpenURL
Jiang, Jie On a repulsion Keller-Segel system with a logarithmic sensitivity. (English) Zbl 07629681 Eur. J. Appl. Math. 33, No. 1, 153-181 (2022). MSC: 35B35 35D30 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{J. Jiang}, Eur. J. Appl. Math. 33, No. 1, 153--181 (2022; Zbl 07629681) Full Text: DOI arXiv OpenURL
Winkler, Michael Approaching logarithmic singularities in quasilinear chemotaxis-consumption systems with signal-dependent sensitivities. (English) Zbl 07595608 Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6565-6587 (2022). Reviewer: Neng Zhu (Nanchang) MSC: 35B45 35B65 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{M. Winkler}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6565--6587 (2022; Zbl 07595608) Full Text: DOI OpenURL
Zeng, Yanni; Zhao, Kun Asymptotic behavior of solutions to a chemotaxis-logistic model with transitional end-states. (English) Zbl 1496.35095 J. Differ. Equations 336, 1-43 (2022). MSC: 35B40 35K45 35L45 35K59 92C17 PDF BibTeX XML Cite \textit{Y. Zeng} and \textit{K. Zhao}, J. Differ. Equations 336, 1--43 (2022; Zbl 1496.35095) Full Text: DOI OpenURL
Berti, Diego; Corli, Andrea; Malaguti, Luisa Diffusion-convection reaction equations with sign-changing diffusivity and bistable reaction term. (English) Zbl 1491.35109 Nonlinear Anal., Real World Appl. 67, Article ID 103579, 29 p. (2022). MSC: 35C07 35K59 PDF BibTeX XML Cite \textit{D. Berti} et al., Nonlinear Anal., Real World Appl. 67, Article ID 103579, 29 p. (2022; Zbl 1491.35109) Full Text: DOI arXiv OpenURL
Carrillo, J. A.; Delgadino, M. G.; Frank, R. L.; Lewin, M. Fast diffusion leads to partial mass concentration in Keller-Segel type stationary solutions. (English) Zbl 1495.35108 Math. Models Methods Appl. Sci. 32, No. 4, 831-850 (2022). Reviewer: Philippe Laurençot (Toulouse) MSC: 35K67 26D15 47J20 92C17 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Math. Models Methods Appl. Sci. 32, No. 4, 831--850 (2022; Zbl 1495.35108) Full Text: DOI arXiv OpenURL
Menci, Marta; Papi, Marco Existence of solutions for hybrid systems of differential equations under exogenous information with discontinuous source term. (English) Zbl 07531078 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112885, 20 p. (2022). MSC: 34A38 35K15 34A36 34A12 PDF BibTeX XML Cite \textit{M. Menci} and \textit{M. Papi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112885, 20 p. (2022; Zbl 07531078) Full Text: DOI OpenURL
Shi, Weixuan; Zhang, Jianzhong; Xie, Mingfeng Optimal time-decay estimates in the critical framework for a chemotaxis model. (English) Zbl 1492.35379 Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1003-1026 (2022). MSC: 35Q92 92C17 35G55 35M31 PDF BibTeX XML Cite \textit{W. Shi} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1003--1026 (2022; Zbl 1492.35379) Full Text: DOI OpenURL
Gomez, Justin; Holmes, Nathanael; Hansen, Austin; Adhikarla, Vikram; Gutova, Margarita; Rockne, Russell C.; Cho, Heyrim Mathematical modeling of therapeutic neural stem cell migration in mouse brain with and without brain tumors. (English) Zbl 1486.92083 Math. Biosci. Eng. 19, No. 3, 2592-2615 (2022). MSC: 92C50 92C37 92C17 PDF BibTeX XML Cite \textit{J. Gomez} et al., Math. Biosci. Eng. 19, No. 3, 2592--2615 (2022; Zbl 1486.92083) Full Text: DOI OpenURL
Li, Tong; Mathur, Nitesh Riemann problem for a non-strictly hyperbolic system in chemotaxis. (English) Zbl 1485.35287 Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2173-2187 (2022). MSC: 35L45 35L60 35L65 35L67 35M31 92C17 PDF BibTeX XML Cite \textit{T. Li} and \textit{N. Mathur}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2173--2187 (2022; Zbl 1485.35287) Full Text: DOI OpenURL
Conte, Martina; Loy, Nadia Multi-cue kinetic model with non-local sensing for cell migration on a fiber network with chemotaxis. (English) Zbl 1489.35286 Bull. Math. Biol. 84, No. 3, Paper No. 42, 46 p. (2022). Reviewer: Philippe Laurençot (Toulouse) MSC: 35Q92 45K05 92C17 82C40 PDF BibTeX XML Cite \textit{M. Conte} and \textit{N. Loy}, Bull. Math. Biol. 84, No. 3, Paper No. 42, 46 p. (2022; Zbl 1489.35286) Full Text: DOI arXiv OpenURL
Fernández-Romero, Antonio; Guillén-González, Francisco; Suárez, Antonio A glioblastoma PDE-ODE model including chemotaxis and vasculature. (English) Zbl 1485.35052 ESAIM, Math. Model. Numer. Anal. 56, No. 2, 407-431 (2022). MSC: 35B40 35Q92 47J35 65M60 92B05 92C17 PDF BibTeX XML Cite \textit{A. Fernández-Romero} et al., ESAIM, Math. Model. Numer. Anal. 56, No. 2, 407--431 (2022; Zbl 1485.35052) Full Text: DOI arXiv OpenURL
Peng, Hongyun; Wang, Zhi-An; Zhu, Changjiang Global weak solutions and asymptotics of a singular PDE-ODE chemotaxis system with discontinuous data. (English) Zbl 1484.35062 Sci. China, Math. 65, No. 2, 269-290 (2022). MSC: 35B40 35K51 35K59 35R05 92C17 PDF BibTeX XML Cite \textit{H. Peng} et al., Sci. China, Math. 65, No. 2, 269--290 (2022; Zbl 1484.35062) Full Text: DOI arXiv OpenURL
Park, Jeungeun; Aminzare, Zahra A mathematical description of bacterial chemotaxis in response to two stimuli. (English) Zbl 1476.92011 Bull. Math. Biol. 84, No. 1, Paper No. 9, 35 p. (2022). MSC: 92C17 92C70 92D25 35Q84 PDF BibTeX XML Cite \textit{J. Park} and \textit{Z. Aminzare}, Bull. Math. Biol. 84, No. 1, Paper No. 9, 35 p. (2022; Zbl 1476.92011) Full Text: DOI arXiv OpenURL
Zeng, Yanni Nonlinear stability of diffusive contact wave for a chemotaxis model. (English) Zbl 1486.35042 J. Differ. Equations 308, 286-326 (2022). Reviewer: Yuanyuan Ke (Beijing) MSC: 35B35 35A01 35B40 35B45 92C17 PDF BibTeX XML Cite \textit{Y. Zeng}, J. Differ. Equations 308, 286--326 (2022; Zbl 1486.35042) Full Text: DOI OpenURL
Luo, Demou Global bifurcation for a reaction-diffusion predator-prey model with Holling-II functional response and prey-taxis. (English) Zbl 1486.35037 Chaos Solitons Fractals 147, Article ID 110975, 8 p. (2021). MSC: 35B32 35J57 35K57 92D25 92D40 PDF BibTeX XML Cite \textit{D. Luo}, Chaos Solitons Fractals 147, Article ID 110975, 8 p. (2021; Zbl 1486.35037) Full Text: DOI OpenURL
Bell, Jonathan; Haskell, Evan C. Attraction-repulsion taxis mechanisms in a predator-prey model. (English) Zbl 1479.35070 SN Partial Differ. Equ. Appl. 2, No. 3, Paper No. 34, 29 p. (2021). MSC: 35B32 35B35 35B36 35K51 35K59 92C17 92D25 PDF BibTeX XML Cite \textit{J. Bell} and \textit{E. C. Haskell}, SN Partial Differ. Equ. Appl. 2, No. 3, Paper No. 34, 29 p. (2021; Zbl 1479.35070) Full Text: DOI OpenURL
Ghani, Mohammad; Li, Jingyu; Zhang, Kaijun Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. (English) Zbl 1478.35036 Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6253-6265 (2021). MSC: 35B40 35C07 35K45 35K59 92C17 PDF BibTeX XML Cite \textit{M. Ghani} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 12, 6253--6265 (2021; Zbl 1478.35036) Full Text: DOI OpenURL
Lajusticia-Costan, Carlos; Santalla, Silvia N.; Rodríguez-Laguna, Javier; Korutcheva, Elka Random walkers on a deformable medium. (English) Zbl 07399575 J. Stat. Mech. Theory Exp. 2021, No. 7, Article ID 073207, 22 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{C. Lajusticia-Costan} et al., J. Stat. Mech. Theory Exp. 2021, No. 7, Article ID 073207, 22 p. (2021; Zbl 07399575) Full Text: DOI arXiv OpenURL
Raghavan, Raghu Growth and form, Lie algebras and special functions. (English) Zbl 1471.92059 Math. Biosci. Eng. 18, No. 4, 3598-3645 (2021). MSC: 92C15 92C10 92B20 17B99 PDF BibTeX XML Cite \textit{R. Raghavan}, Math. Biosci. Eng. 18, No. 4, 3598--3645 (2021; Zbl 1471.92059) Full Text: DOI OpenURL
Haskell, Evan C.; Bell, Jonathan Bifurcation analysis for a one predator and two prey model with prey-taxis. (English) Zbl 1469.92089 J. Biol. Syst. 29, No. 2, 495-524 (2021). MSC: 92D25 35K59 35B32 PDF BibTeX XML Cite \textit{E. C. Haskell} and \textit{J. Bell}, J. Biol. Syst. 29, No. 2, 495--524 (2021; Zbl 1469.92089) Full Text: DOI OpenURL
Wang, Dehua; Wang, Zhian; Zhao, Kun Cauchy problem of a system of parabolic conservation laws arising from the singular Keller-Segel model in multi-dimensions. (English) Zbl 1467.35056 Indiana Univ. Math. J. 70, No. 1, 1-47 (2021). MSC: 35B40 35B25 35K45 35K58 35L65 92C17 PDF BibTeX XML Cite \textit{D. Wang} et al., Indiana Univ. Math. J. 70, No. 1, 1--47 (2021; Zbl 1467.35056) Full Text: DOI OpenURL
Viglialoro, Giuseppe Global in time and bounded solutions to a parabolic-elliptic chemotaxis system with nonlinear diffusion and signal-dependent sensitivity. (English) Zbl 1465.35006 Appl. Math. Optim. 83, No. 2, 979-1004 (2021). MSC: 35A01 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{G. Viglialoro}, Appl. Math. Optim. 83, No. 2, 979--1004 (2021; Zbl 1465.35006) Full Text: DOI OpenURL
Zhu, Neng; Liu, Zhengrong; Wang, Fang; Zhao, Kun Asymptotic dynamics of a system of conservation laws from chemotaxis. (English) Zbl 1462.35088 Discrete Contin. Dyn. Syst. 41, No. 2, 813-847 (2021). Reviewer: Anna Zhigun (Belfast) MSC: 35B40 35K57 35Q92 92C17 35K45 35D35 PDF BibTeX XML Cite \textit{N. Zhu} et al., Discrete Contin. Dyn. Syst. 41, No. 2, 813--847 (2021; Zbl 1462.35088) Full Text: DOI OpenURL
Lorenzi, T.; Macfarlane, F. R.; Villa, C. Discrete and continuum models for the evolutionary and spatial dynamics of cancer: a very short introduction through two case studies. (English) Zbl 1480.92106 Mondaini, Rubem P. (ed.), Trends in biomathematics: modeling cells, flows, epidemics, and the environment. Selected works presented at the 19th BIOMAT consortium lectures, Szeged, Hungary, October 21–25, 2019. Cham: Springer. 359-380 (2020). MSC: 92C50 92C37 92D15 PDF BibTeX XML Cite \textit{T. Lorenzi} et al., in: Trends in biomathematics: modeling cells, flows, epidemics, and the environment. Selected works presented at the 19th BIOMAT consortium lectures, Szeged, Hungary, October 21--25, 2019. Cham: Springer. 359--380 (2020; Zbl 1480.92106) Full Text: DOI arXiv OpenURL
Bubba, Federica; Lorenzi, Tommaso; Macfarlane, Fiona R. From a discrete model of chemotaxis with volume-filling to a generalized Patlak-Keller-Segel model. (English) Zbl 1472.92062 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2237, Article ID 20190871, 19 p. (2020). MSC: 92C17 PDF BibTeX XML Cite \textit{F. Bubba} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2237, Article ID 20190871, 19 p. (2020; Zbl 1472.92062) Full Text: DOI arXiv OpenURL
Macfarlane, Fiona R.; Chaplain, Mark A. J.; Lorenzi, Tommaso A hybrid discrete-continuum approach to model Turing pattern formation. (English) Zbl 1468.92020 Math. Biosci. Eng. 17, No. 6, 7442-7479 (2020). MSC: 92C15 92C37 PDF BibTeX XML Cite \textit{F. R. Macfarlane} et al., Math. Biosci. Eng. 17, No. 6, 7442--7479 (2020; Zbl 1468.92020) Full Text: DOI arXiv OpenURL
Xu, Xin Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon. (English) Zbl 1476.35029 Commun. Pure Appl. Anal. 19, No. 9, 4327-4348 (2020). Reviewer: Johannes Lankeit (Hannover) MSC: 35B32 35B40 35K57 92C17 35J57 35B09 34B15 PDF BibTeX XML Cite \textit{X. Xu}, Commun. Pure Appl. Anal. 19, No. 9, 4327--4348 (2020; Zbl 1476.35029) Full Text: DOI OpenURL
Viglialoro, Giuseppe; Woolley, Thomas E. Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production. (English) Zbl 1447.35009 Appl. Anal. 99, No. 14, 2507-2525 (2020). MSC: 35A01 35K59 92C17 35K51 PDF BibTeX XML Cite \textit{G. Viglialoro} and \textit{T. E. Woolley}, Appl. Anal. 99, No. 14, 2507--2525 (2020; Zbl 1447.35009) Full Text: DOI arXiv OpenURL
Negreanu, Mihaela; Tello, J. Ignacio On a parabolic-ODE system of chemotaxis. (English) Zbl 1439.92045 Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 279-292 (2020). MSC: 92C17 35Q92 35K10 35K55 PDF BibTeX XML Cite \textit{M. Negreanu} and \textit{J. I. Tello}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 279--292 (2020; Zbl 1439.92045) Full Text: DOI OpenURL
Burczak, Jan; Granero-Belinchón, Rafael Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. (English) Zbl 1439.35054 Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 139-164 (2020). MSC: 35B40 35B65 35K51 35R11 92C17 35A01 35S10 PDF BibTeX XML Cite \textit{J. Burczak} and \textit{R. Granero-Belinchón}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 139--164 (2020; Zbl 1439.35054) Full Text: DOI arXiv OpenURL
Nie, Yao; Yuan, Jia Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces. (English) Zbl 1442.35006 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111782, 17 p. (2020). Reviewer: Neng Zhu (Nanchang) MSC: 35A01 35A02 35G55 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Nie} and \textit{J. Yuan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111782, 17 p. (2020; Zbl 1442.35006) Full Text: DOI OpenURL
Chen, Hua; Li, Jian-Meng; Wang, Kelei On the vanishing viscosity limit of a chemotaxis model. (English) Zbl 1431.35062 Discrete Contin. Dyn. Syst. 40, No. 3, 1963-1987 (2020). MSC: 35K51 35Q92 35M12 92C17 PDF BibTeX XML Cite \textit{H. Chen} et al., Discrete Contin. Dyn. Syst. 40, No. 3, 1963--1987 (2020; Zbl 1431.35062) Full Text: DOI OpenURL
Hao, Wenrui; Xue, Chuan Spatial pattern formation in reaction-diffusion models: a computational approach. (English) Zbl 1432.92009 J. Math. Biol. 80, No. 1-2, 521-543 (2020). MSC: 92C15 35Q92 35K57 PDF BibTeX XML Cite \textit{W. Hao} and \textit{C. Xue}, J. Math. Biol. 80, No. 1--2, 521--543 (2020; Zbl 1432.92009) Full Text: DOI OpenURL
Giniūnaitė, Rasa; Baker, Ruth E.; Kulesa, Paul M.; Maini, Philip K. Modelling collective cell migration: neural crest as a model paradigm. (English) Zbl 1432.92016 J. Math. Biol. 80, No. 1-2, 481-504 (2020). MSC: 92C17 92C20 PDF BibTeX XML Cite \textit{R. Giniūnaitė} et al., J. Math. Biol. 80, No. 1--2, 481--504 (2020; Zbl 1432.92016) Full Text: DOI OpenURL
Loy, Nadia; Preziosi, Luigi Kinetic models with non-local sensing determining cell polarization and speed according to independent cues. (English) Zbl 1432.92020 J. Math. Biol. 80, No. 1-2, 373-421 (2020). MSC: 92C17 92C37 35Q92 PDF BibTeX XML Cite \textit{N. Loy} and \textit{L. Preziosi}, J. Math. Biol. 80, No. 1--2, 373--421 (2020; Zbl 1432.92020) Full Text: DOI arXiv OpenURL
Chaplain, Mark A. J.; Lorenzi, Tommaso; Macfarlane, Fiona R. Bridging the gap between individual-based and continuum models of growing cell populations. (English) Zbl 1432.92007 J. Math. Biol. 80, No. 1-2, 343-371 (2020). MSC: 92C15 92C17 35Q92 35C07 PDF BibTeX XML Cite \textit{M. A. J. Chaplain} et al., J. Math. Biol. 80, No. 1--2, 343--371 (2020; Zbl 1432.92007) Full Text: DOI arXiv Link OpenURL
Hillen, Thomas; Painter, Kevin J.; Stolarska, Magdalena A.; Xue, Chuan Multiscale phenomena and patterns in biological systems: special issue in honour of Hans Othmer. (English) Zbl 1433.01016 J. Math. Biol. 80, No. 1-2, 275-281 (2020). MSC: 01A70 92-03 PDF BibTeX XML Cite \textit{T. Hillen} et al., J. Math. Biol. 80, No. 1--2, 275--281 (2020; Zbl 1433.01016) Full Text: DOI OpenURL
Zeng, Yanni; Zhao, Kun Recent results for the logarithmic Keller-Segel-Fisher/KPP system. (English) Zbl 1431.35216 Bol. Soc. Parana. Mat. (3) 38, No. 7, 37-48 (2020). MSC: 35Q92 35K57 35A01 35B40 35M31 PDF BibTeX XML Cite \textit{Y. Zeng} and \textit{K. Zhao}, Bol. Soc. Parana. Mat. (3) 38, No. 7, 37--48 (2020; Zbl 1431.35216) Full Text: Link OpenURL
Peng, Hongyun; Wang, Zhian On a parabolic-hyperbolic chemotaxis system with discontinuous data: well-posedness, stability and regularity. (English) Zbl 1435.35110 J. Differ. Equations 268, No. 8, 4374-4415 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35C07 35B40 92C17 35G55 35R05 PDF BibTeX XML Cite \textit{H. Peng} and \textit{Z. Wang}, J. Differ. Equations 268, No. 8, 4374--4415 (2020; Zbl 1435.35110) Full Text: DOI arXiv OpenURL
Yereniuk, Michael A.; Olson, Sarah D. Computational framework to capture the spatiotemporal density of cells with a cumulative environmental coupling. (English) Zbl 1432.92022 J. Comput. Appl. Math. 369, Article ID 112572, 21 p. (2020). MSC: 92C17 92D40 35Q92 92-08 PDF BibTeX XML Cite \textit{M. A. Yereniuk} and \textit{S. D. Olson}, J. Comput. Appl. Math. 369, Article ID 112572, 21 p. (2020; Zbl 1432.92022) Full Text: DOI arXiv OpenURL
Zeng, Yanni; Zhao, Kun Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate. (English) Zbl 1439.35496 J. Differ. Equations 268, No. 4, 1379-1411 (2020); corrigendum ibid. 269, No. 7, 6359-6363 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B40 92C17 PDF BibTeX XML Cite \textit{Y. Zeng} and \textit{K. Zhao}, J. Differ. Equations 268, No. 4, 1379--1411 (2020; Zbl 1439.35496) Full Text: DOI OpenURL
Zhu, Neng; Liu, Zhengrong; Zhao, Kun Non blowup of a generalized Boussinesq-Burgers system with nonlinear dispersion relation and large data. (English) Zbl 1451.35029 Physica D 392, 81-98 (2019). MSC: 35B40 35Q35 35A09 35A01 35A02 76B15 PDF BibTeX XML Cite \textit{N. Zhu} et al., Physica D 392, 81--98 (2019; Zbl 1451.35029) Full Text: DOI OpenURL
Chertock, Alina; Kurganov, Alexander High-resolution positivity and asymptotic preserving numerical methods for chemotaxis and related models. (English) Zbl 1453.92047 Bellomo, Nicola (ed.) et al., Active particles, Volume 2. Advances in theory, models, and applications. Cham: Birkhäuser. Model. Simul. Sci. Eng. Technol., 109-148 (2019). MSC: 92C17 92C15 35Q92 65M06 65M08 92-02 PDF BibTeX XML Cite \textit{A. Chertock} and \textit{A. Kurganov}, in: Active particles, Volume 2. Advances in theory, models, and applications. Cham: Birkhäuser. 109--148 (2019; Zbl 1453.92047) Full Text: DOI OpenURL
Zhu, Yingjie Existence of a nontrivial steady-state solution to a parabolic-parabolic chemotaxis system with singular sensitivity. (English) Zbl 1453.92053 Discrete Dyn. Nat. Soc. 2019, Article ID 8140380, 6 p. (2019). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{Y. Zhu}, Discrete Dyn. Nat. Soc. 2019, Article ID 8140380, 6 p. (2019; Zbl 1453.92053) Full Text: DOI OpenURL
Wang, Zhigang Existence results for chemotaxis-shallow water system with degenerate viscosity coefficients and initial vacuum. (English) Zbl 1427.35213 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 265-293 (2019). MSC: 35Q35 35Q92 76N10 92C17 35M10 35Q30 35B65 35B44 76R50 PDF BibTeX XML Cite \textit{Z. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 265--293 (2019; Zbl 1427.35213) Full Text: DOI OpenURL
Jia, Zhe; Yang, Zuodong Global existence to a chemotaxis-consumption model with nonlinear diffusion and singular sensitivity. (English) Zbl 1423.35181 Appl. Anal. 98, No. 16, 2916-2929 (2019). MSC: 35K55 PDF BibTeX XML Cite \textit{Z. Jia} and \textit{Z. Yang}, Appl. Anal. 98, No. 16, 2916--2929 (2019; Zbl 1423.35181) Full Text: DOI OpenURL
Xu, Fuyi; Li, Xinliang; Wang, Chengli The large-time behavior of the multi-dimensional hyperbolic-parabolic model arising from chemotaxis. (English) Zbl 1422.92027 J. Math. Phys. 60, No. 9, 091509, 12 p. (2019). MSC: 92C17 35G10 35K15 35L02 35D35 82C27 PDF BibTeX XML Cite \textit{F. Xu} et al., J. Math. Phys. 60, No. 9, 091509, 12 p. (2019; Zbl 1422.92027) Full Text: DOI OpenURL
Painter, Kevin J. Mathematical models for chemotaxis and their applications in self-organisation phenomena. (English) Zbl 1422.92025 J. Theor. Biol. 481, 162-182 (2019). MSC: 92C17 92C15 35Q92 PDF BibTeX XML Cite \textit{K. J. Painter}, J. Theor. Biol. 481, 162--182 (2019; Zbl 1422.92025) Full Text: DOI arXiv OpenURL
Yereniuk, Michael A.; Olson, Sarah D. Global density analysis for an off-lattice agent-based model. (English) Zbl 1419.37089 SIAM J. Appl. Math. 79, No. 5, 1700-1721 (2019). MSC: 37N40 91B69 92D30 PDF BibTeX XML Cite \textit{M. A. Yereniuk} and \textit{S. D. Olson}, SIAM J. Appl. Math. 79, No. 5, 1700--1721 (2019; Zbl 1419.37089) Full Text: DOI arXiv OpenURL
Lai De Oliveira, Alexander; Binder, Benjamin J. Modeling uniaxial nonuniform cell proliferation. (English) Zbl 1417.92024 Bull. Math. Biol. 81, No. 7, 2220-2238 (2019). MSC: 92C15 68Q85 PDF BibTeX XML Cite \textit{A. Lai De Oliveira} and \textit{B. J. Binder}, Bull. Math. Biol. 81, No. 7, 2220--2238 (2019; Zbl 1417.92024) Full Text: DOI OpenURL
Chertock, Alina; Kurganov, Alexander; Lukáčová-Medviďová, Mária; Özcan, Şeyma Nur An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. (English) Zbl 1407.92027 Kinet. Relat. Models 12, No. 1, 195-216 (2019). MSC: 92C17 35Q20 35Q92 PDF BibTeX XML Cite \textit{A. Chertock} et al., Kinet. Relat. Models 12, No. 1, 195--216 (2019; Zbl 1407.92027) Full Text: DOI OpenURL
Deng, Chao; Li, Tong Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. (English) Zbl 1429.35030 Discrete Contin. Dyn. Syst., Ser. B 24, No. 1, 183-195 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35B40 35K52 35K59 92C17 PDF BibTeX XML Cite \textit{C. Deng} and \textit{T. Li}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 1, 183--195 (2019; Zbl 1429.35030) Full Text: DOI OpenURL
Bellouquid, Abdelghani; Tagoudjeu, Jacques An asymptotic preserving scheme for kinetic models for chemotaxis phenomena. (English) Zbl 1426.65124 Commun. Appl. Ind. Math. 9, No. 2, 61-75 (2018). MSC: 65M06 35Q20 82C22 92C17 35Q92 PDF BibTeX XML Cite \textit{A. Bellouquid} and \textit{J. Tagoudjeu}, Commun. Appl. Ind. Math. 9, No. 2, 61--75 (2018; Zbl 1426.65124) Full Text: DOI arXiv OpenURL
Xu, Tianyuan; Ji, Shanming; Jin, Chunhua; Mei, Ming; Yin, Jingxue Early and late stage profiles for a chemotaxis model with density-dependent jump probability. (English) Zbl 1416.92030 Math. Biosci. Eng. 15, No. 6, 1345-1385 (2018). MSC: 92C17 35Q92 35K57 PDF BibTeX XML Cite \textit{T. Xu} et al., Math. Biosci. Eng. 15, No. 6, 1345--1385 (2018; Zbl 1416.92030) Full Text: DOI arXiv OpenURL
Jin, Shi; Lu, Hanqing; Pareschi, Lorenzo A high order stochastic asymptotic preserving scheme for chemotaxis kinetic models with random inputs. (English) Zbl 1471.92062 Multiscale Model. Simul. 16, No. 4, 1884-1915 (2018). Reviewer: Stefanie Sonner (Nijmegen) MSC: 92C17 65C30 60H35 35K40 35Q92 PDF BibTeX XML Cite \textit{S. Jin} et al., Multiscale Model. Simul. 16, No. 4, 1884--1915 (2018; Zbl 1471.92062) Full Text: DOI arXiv OpenURL
Martinez, Vincent R.; Wang, Zhian; Zhao, Kun Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology. (English) Zbl 1402.35286 Indiana Univ. Math. J. 67, No. 4, 1383-1424 (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K55 92C17 PDF BibTeX XML Cite \textit{V. R. Martinez} et al., Indiana Univ. Math. J. 67, No. 4, 1383--1424 (2018; Zbl 1402.35286) Full Text: DOI Link OpenURL
Yan, Jianlu; Li, Yuxiang Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity. (English) Zbl 1401.35170 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 176, 288-302 (2018). MSC: 35K55 35A01 35Q92 92C17 PDF BibTeX XML Cite \textit{J. Yan} and \textit{Y. Li}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 176, 288--302 (2018; Zbl 1401.35170) Full Text: DOI OpenURL
Zhu, Neng; Liu, Zhengrong; Martinez, Vincent R.; Zhao, Kun Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model. (English) Zbl 1404.35468 SIAM J. Math. Anal. 50, No. 5, 5380-5425 (2018). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q92 35B40 92C17 35D30 35D35 PDF BibTeX XML Cite \textit{N. Zhu} et al., SIAM J. Math. Anal. 50, No. 5, 5380--5425 (2018; Zbl 1404.35468) Full Text: DOI OpenURL
Xu, Tianyuan; Ji, Shanming; Mei, Ming; Yin, Jingxue Traveling waves for time-delayed reaction diffusion equations with degenerate diffusion. (English) Zbl 1406.35087 J. Differ. Equations 265, No. 9, 4442-4485 (2018). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35C07 35K57 35R09 35K65 PDF BibTeX XML Cite \textit{T. Xu} et al., J. Differ. Equations 265, No. 9, 4442--4485 (2018; Zbl 1406.35087) Full Text: DOI OpenURL
Jin, Chunhua Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. (English) Zbl 1397.92094 Discrete Contin. Dyn. Syst. 38, No. 7, 3547-3566 (2018). MSC: 92C17 35Q92 35B35 PDF BibTeX XML Cite \textit{C. Jin}, Discrete Contin. Dyn. Syst. 38, No. 7, 3547--3566 (2018; Zbl 1397.92094) Full Text: DOI OpenURL
Swan, Amanda; Hillen, Thomas; Bowman, John C.; Murtha, Albert D. A patient-specific anisotropic diffusion model for brain tumour spread. (English) Zbl 1394.92064 Bull. Math. Biol. 80, No. 5, 1259-1291 (2018). MSC: 92C50 92C17 35K57 PDF BibTeX XML Cite \textit{A. Swan} et al., Bull. Math. Biol. 80, No. 5, 1259--1291 (2018; Zbl 1394.92064) Full Text: DOI OpenURL
Yurk, Brian P. Homogenization analysis of invasion dynamics in heterogeneous landscapes with differential bias and motility. (English) Zbl 1392.92119 J. Math. Biol. 77, No. 1, 27-54 (2018). MSC: 92D50 92D40 35K57 35B27 PDF BibTeX XML Cite \textit{B. P. Yurk}, J. Math. Biol. 77, No. 1, 27--54 (2018; Zbl 1392.92119) Full Text: DOI OpenURL
Tao, Qiang; Yao, Zheng-An Global existence and large time behavior for a two-dimensional chemotaxis-shallow water system. (English) Zbl 1402.35287 J. Differ. Equations 265, No. 7, 3092-3129 (2018). Reviewer: Pavel Burda (Praha) MSC: 35Q92 35D35 35A01 35B40 35Q35 76D05 92C17 PDF BibTeX XML Cite \textit{Q. Tao} and \textit{Z.-A. Yao}, J. Differ. Equations 265, No. 7, 3092--3129 (2018; Zbl 1402.35287) Full Text: DOI OpenURL
Yousefnezhad, Mohsen; Mohammadi, Seyyed Abbas; Bozorgnia, Farid A free boundary problem for a predator-prey model with nonlinear prey-taxis. (English) Zbl 1488.35653 Appl. Math., Praha 63, No. 2, 125-147 (2018). MSC: 35R35 35K57 35K55 92D25 92B05 PDF BibTeX XML Cite \textit{M. Yousefnezhad} et al., Appl. Math., Praha 63, No. 2, 125--147 (2018; Zbl 1488.35653) Full Text: DOI OpenURL
Hou, Qianqian; Liu, Cheng-Jie; Wang, Ya-Guang; Wang, Zhian Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one-dimensional case. (English) Zbl 1394.35025 SIAM J. Math. Anal. 50, No. 3, 3058-3091 (2018). MSC: 35B25 35A01 35B40 35B44 35K57 35Q92 92C17 PDF BibTeX XML Cite \textit{Q. Hou} et al., SIAM J. Math. Anal. 50, No. 3, 3058--3091 (2018; Zbl 1394.35025) Full Text: DOI OpenURL
Peng, Hongyun; Wang, Zhi-An Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations. (English) Zbl 1397.35318 J. Differ. Equations 265, No. 6, 2577-2613 (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35C07 35B40 35B44 35K57 92C17 PDF BibTeX XML Cite \textit{H. Peng} and \textit{Z.-A. Wang}, J. Differ. Equations 265, No. 6, 2577--2613 (2018; Zbl 1397.35318) Full Text: DOI OpenURL
Deng, Shijin Initial-boundary value problem of a parabolic-hyperbolic system arising from tumor angiogenesis. (English) Zbl 1390.35369 J. Differ. Equations 265, No. 3, 863-890 (2018). MSC: 35Q92 92C37 PDF BibTeX XML Cite \textit{S. Deng}, J. Differ. Equations 265, No. 3, 863--890 (2018; Zbl 1390.35369) Full Text: DOI OpenURL
Buttenschön, Andreas; Hillen, Thomas; Gerisch, Alf; Painter, Kevin J. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. (English) Zbl 1392.92012 J. Math. Biol. 76, No. 1-2, 429-456 (2018). MSC: 92C17 35Q92 35R09 PDF BibTeX XML Cite \textit{A. Buttenschön} et al., J. Math. Biol. 76, No. 1--2, 429--456 (2018; Zbl 1392.92012) Full Text: DOI OpenURL
Winkler, Michael Renormalized radial large-data solutions to the higher-dimensional Keller-Segel system with singular sensitivity and signal absorption. (English) Zbl 1378.35165 J. Differ. Equations 264, No. 3, 2310-2350 (2018). MSC: 35K55 35D30 35B65 92C17 35Q92 PDF BibTeX XML Cite \textit{M. Winkler}, J. Differ. Equations 264, No. 3, 2310--2350 (2018; Zbl 1378.35165) Full Text: DOI OpenURL
Berlyand, Leonid (ed.); Fuhrmann, Jan (ed.); Marciniak-Czochra, Anna (ed.); Surulescu, Christina (ed.) Mini-workshop: PDE models of motility and invasion in active biosystems. Abstracts from the mini-workshop held October 22–28, 2017. (English) Zbl 1409.00069 Oberwolfach Rep. 14, No. 4, 2907-2942 (2017). MSC: 00B05 00B25 92C17 92C37 35Q92 92-06 PDF BibTeX XML Cite \textit{L. Berlyand} (ed.) et al., Oberwolfach Rep. 14, No. 4, 2907--2942 (2017; Zbl 1409.00069) Full Text: DOI OpenURL
Tsutsui, Yohei Bounded global solutions to a Keller-Segel system with nondiffusive chemical in \(\mathbb{R}^{n}\). (English) Zbl 1377.92013 J. Evol. Equ. 17, No. 2, 627-640 (2017). MSC: 92C17 35B60 35Q92 PDF BibTeX XML Cite \textit{Y. Tsutsui}, J. Evol. Equ. 17, No. 2, 627--640 (2017; Zbl 1377.92013) Full Text: DOI OpenURL
Grosskinsky, Stefan; Marahrens, Daniel; Stevens, Angela A hydrodynamic limit for chemotaxis in a given heterogeneous environment. (English) Zbl 1370.92030 Vietnam J. Math. 45, No. 1-2, 127-152 (2017). MSC: 92C17 60K35 60F25 35K55 35Q82 82C22 PDF BibTeX XML Cite \textit{S. Grosskinsky} et al., Vietnam J. Math. 45, No. 1--2, 127--152 (2017; Zbl 1370.92030) Full Text: DOI arXiv OpenURL
Luo, Lan Large time behavior for a multidimensional chemotaxis model. (English) Zbl 1360.35046 Bound. Value Probl. 2017, Paper No. 40, 11 p. (2017). MSC: 35G25 35M10 35Q92 PDF BibTeX XML Cite \textit{L. Luo}, Bound. Value Probl. 2017, Paper No. 40, 11 p. (2017; Zbl 1360.35046) Full Text: DOI OpenURL
Bodnar, Marek; Okińczyc, Natalia; Vela-Pérez, M. Mathematical model for path selection by ants between nest and food source. (English) Zbl 1361.92078 Math. Biosci. 285, 14-24 (2017). MSC: 92D50 60G50 PDF BibTeX XML Cite \textit{M. Bodnar} et al., Math. Biosci. 285, 14--24 (2017; Zbl 1361.92078) Full Text: DOI OpenURL
Granero-Belinchón, Rafael Global solutions for a hyperbolic-parabolic system of chemotaxis. (English) Zbl 1356.35100 J. Math. Anal. Appl. 449, No. 1, 872-883 (2017). MSC: 35G61 35R11 92C17 PDF BibTeX XML Cite \textit{R. Granero-Belinchón}, J. Math. Anal. Appl. 449, No. 1, 872--883 (2017; Zbl 1356.35100) Full Text: DOI arXiv OpenURL
Mischler, Stéphane; Weng, Qilong On a linear runs and tumbles equation. (English) Zbl 1357.35048 Kinet. Relat. Models 10, No. 3, 799-822 (2017). MSC: 35B40 35Q92 47D06 92C17 PDF BibTeX XML Cite \textit{S. Mischler} and \textit{Q. Weng}, Kinet. Relat. Models 10, No. 3, 799--822 (2017; Zbl 1357.35048) Full Text: DOI arXiv OpenURL
Granero-Belinchón, Rafael On the fractional Fisher information with applications to a hyperbolic-parabolic system of chemotaxis. (English) Zbl 1401.35315 J. Differ. Equations 262, No. 4, 3250-3283 (2017). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 35R11 35M31 35A01 35B65 35D30 35Q92 PDF BibTeX XML Cite \textit{R. Granero-Belinchón}, J. Differ. Equations 262, No. 4, 3250--3283 (2017; Zbl 1401.35315) Full Text: DOI arXiv OpenURL
Wen, Zijuan; Fan, Meng; Asiri, Asim M.; Alzahrani, Ebraheem O.; El-Dessoky, Mohamed M.; Kuang, Yang Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. (English) Zbl 06646808 Math. Biosci. Eng. 14, No. 2, 407-420 (2017). MSC: 35A01 35A02 35A09 92B05 PDF BibTeX XML Cite \textit{Z. Wen} et al., Math. Biosci. Eng. 14, No. 2, 407--420 (2017; Zbl 06646808) Full Text: DOI OpenURL
Tchepmo Djomegni, P. M.; Govinder, K. S. Generalized travelling wave solutions for hyperbolic chemotaxis PDEs. (English) Zbl 1465.35379 Appl. Math. Modelling 40, No. 9-10, 5672-5688 (2016). MSC: 35Q92 35A30 35C07 92C17 PDF BibTeX XML Cite \textit{P. M. Tchepmo Djomegni} and \textit{K. S. Govinder}, Appl. Math. Modelling 40, No. 9--10, 5672--5688 (2016; Zbl 1465.35379) Full Text: DOI OpenURL
Irons, Carolyn; Plank, Michael J.; Simpson, Matthew J. Lattice-free models of directed cell motility. (English) Zbl 1400.92073 Physica A 442, 110-121 (2016). MSC: 92C17 60K35 PDF BibTeX XML Cite \textit{C. Irons} et al., Physica A 442, 110--121 (2016; Zbl 1400.92073) Full Text: DOI Link OpenURL
Zhigun, Anna; Surulescu, Christina; Uatay, Aydar Global existence for a degenerate haptotaxis model of cancer invasion. (English) Zbl 1359.35205 Z. Angew. Math. Phys. 67, No. 6, Article ID 146, 29 p. (2016). MSC: 35Q92 35B45 35D30 35K20 35K51 35K59 35K65 92C17 65M08 65M50 PDF BibTeX XML Cite \textit{A. Zhigun} et al., Z. Angew. Math. Phys. 67, No. 6, Article ID 146, 29 p. (2016; Zbl 1359.35205) Full Text: DOI arXiv OpenURL
Wang, Yilong Global large-data generalized solutions in a two-dimensional chemotaxis-Stokes system with singular sensitivity. (English) Zbl 1408.35131 Bound. Value Probl. 2016, Paper No. 177, 24 p. (2016). MSC: 35Q30 35Q35 35K55 35Q92 92C17 76D07 PDF BibTeX XML Cite \textit{Y. Wang}, Bound. Value Probl. 2016, Paper No. 177, 24 p. (2016; Zbl 1408.35131) Full Text: DOI OpenURL
Li, Tong; Liu, Hailiang; Wang, Lihe Oscillatory traveling wave solutions to an attractive chemotaxis system. (English) Zbl 1350.35055 J. Differ. Equations 261, No. 12, 7080-7098 (2016). MSC: 35C07 35G25 35M10 35L65 92C17 PDF BibTeX XML Cite \textit{T. Li} et al., J. Differ. Equations 261, No. 12, 7080--7098 (2016; Zbl 1350.35055) Full Text: DOI OpenURL
Hou, Qianqian; Wang, Zhi-An; Zhao, Kun Boundary layer problem on a hyperbolic system arising from chemotaxis. (English) Zbl 1347.35021 J. Differ. Equations 261, No. 9, 5035-5070 (2016). MSC: 35B25 35B40 35B44 35Q92 92C17 PDF BibTeX XML Cite \textit{Q. Hou} et al., J. Differ. Equations 261, No. 9, 5035--5070 (2016; Zbl 1347.35021) Full Text: DOI OpenURL
Galakhov, Evgeny; Salieva, Olga; Tello, J. Ignacio On a parabolic-elliptic system with chemotaxis and logistic type growth. (English) Zbl 1347.35090 J. Differ. Equations 261, No. 8, 4631-4647 (2016). MSC: 35G31 92C17 35B40 35B35 PDF BibTeX XML Cite \textit{E. Galakhov} et al., J. Differ. Equations 261, No. 8, 4631--4647 (2016; Zbl 1347.35090) Full Text: DOI OpenURL
Guan, Xiaoyan; Wang, Shaoli; Lv, Ye; Xu, Fuyi The optimal convergence rates for the multi-dimensional chemotaxis model in critical Besov spaces. (English) Zbl 1381.35073 Acta Appl. Math. 143, No. 1, 91-104 (2016). MSC: 35K45 35Q92 92C17 PDF BibTeX XML Cite \textit{X. Guan} et al., Acta Appl. Math. 143, No. 1, 91--104 (2016; Zbl 1381.35073) Full Text: DOI OpenURL
Horstmann, Dirk Do some chemotaxis-growth models possess Lyapunov functionals? (English) Zbl 1353.35065 Appl. Math. Lett. 53, 107-111 (2016). MSC: 35B40 35K40 92C17 PDF BibTeX XML Cite \textit{D. Horstmann}, Appl. Math. Lett. 53, 107--111 (2016; Zbl 1353.35065) Full Text: DOI OpenURL
Wang, Zhi-An; Xiang, Zhaoyin; Yu, Pei Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis. (English) Zbl 1332.35369 J. Differ. Equations 260, No. 3, 2225-2258 (2016). Reviewer: Piotr Biler (Wroclaw) MSC: 35Q92 92C17 35B40 35K55 PDF BibTeX XML Cite \textit{Z.-A. Wang} et al., J. Differ. Equations 260, No. 3, 2225--2258 (2016; Zbl 1332.35369) Full Text: DOI OpenURL
Silchenko, Alexander N.; Tass, Peter A. Mathematical modeling of chemotaxis and glial scarring around implanted electrodes. (English) Zbl 1452.92013 New J. Phys. 17, No. 2, Article ID 023009, 13 p. (2015). MSC: 92C20 92C17 PDF BibTeX XML Cite \textit{A. N. Silchenko} and \textit{P. A. Tass}, New J. Phys. 17, No. 2, Article ID 023009, 13 p. (2015; Zbl 1452.92013) Full Text: DOI OpenURL
Straka, P.; Fedotov, Sergei Transport equations for subdiffusion with nonlinear particle interaction. (English) Zbl 1412.92026 J. Theor. Biol. 366, 71-83 (2015). MSC: 92C17 60G50 35Q92 PDF BibTeX XML Cite \textit{P. Straka} and \textit{S. Fedotov}, J. Theor. Biol. 366, 71--83 (2015; Zbl 1412.92026) Full Text: DOI arXiv OpenURL
Zhu, Yingjie; Cong, Fuzhong Global existence to an attraction-repulsion chemotaxis model with fast diffusion and nonlinear source. (English) Zbl 1418.92021 Discrete Dyn. Nat. Soc. 2015, Article ID 143718, 8 p. (2015). MSC: 92C17 35B40 35Q92 35B44 35K57 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{F. Cong}, Discrete Dyn. Nat. Soc. 2015, Article ID 143718, 8 p. (2015; Zbl 1418.92021) Full Text: DOI OpenURL
Muñoz, Ana I.; Ignacio Tello, J. Numerical resolution of a reinforced random walk model arising in haptotaxis. (English) Zbl 1338.92030 Appl. Math. Comput. 256, 415-424 (2015). MSC: 92C17 65M25 65M60 82C41 PDF BibTeX XML Cite \textit{A. I. Muñoz} and \textit{J. Ignacio Tello}, Appl. Math. Comput. 256, 415--424 (2015; Zbl 1338.92030) Full Text: DOI Link OpenURL
Zhang, Yinghui; Xie, Weijun Global existence and exponential stability for the strong solutions in \(H^{2}\) to the 3-D chemotaxis model. (English) Zbl 1381.35196 Bound. Value Probl. 2015, Paper No. 116, 13 p. (2015). MSC: 35Q92 35A01 35M33 35B35 35D35 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{W. Xie}, Bound. Value Probl. 2015, Paper No. 116, 13 p. (2015; Zbl 1381.35196) Full Text: DOI OpenURL
Kimura, Katsutaka; Hoshino, Hiroki; Kubo, Akisato Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. (English) Zbl 1342.35410 Discrete Contin. Dyn. Syst. 2015, Suppl., 733-744 (2015). MSC: 35Q92 35L53 35K15 35B40 92C50 PDF BibTeX XML Cite \textit{K. Kimura} et al., Discrete Contin. Dyn. Syst. 2015, 733--744 (2015; Zbl 1342.35410) Full Text: DOI OpenURL
Rahman, Kazi A.; Sudarsan, Rangarajan; Eberl, Hermann J. A mixed-culture biofilm model with cross-diffusion. (English) Zbl 1339.92048 Bull. Math. Biol. 77, No. 11, 2086-2124 (2015). MSC: 92C99 PDF BibTeX XML Cite \textit{K. A. Rahman} et al., Bull. Math. Biol. 77, No. 11, 2086--2124 (2015; Zbl 1339.92048) Full Text: DOI OpenURL