Nalzaro, J. B. Characterizations of open and closed maps in a bigeneralized topological space (BGTS). (English) Zbl 1519.54007 J. Anal. Appl. 21, No. 2, 101-112 (2023). MSC: 54E55 54A05 PDF BibTeX XML Cite \textit{J. B. Nalzaro}, J. Anal. Appl. 21, No. 2, 101--112 (2023; Zbl 1519.54007) Full Text: Link
Subhalakshmi, S.; Balamani, N. \( \lambda^{\alpha}_g\)-closed and \(\lambda^{\alpha}_g\)-open maps in topological spaces. (English) Zbl 1489.54019 South East Asian J. Math. Math. Sci. 17, No. 3, 261-276 (2021). MSC: 54C08 PDF BibTeX XML Cite \textit{S. Subhalakshmi} and \textit{N. Balamani}, South East Asian J. Math. Math. Sci. 17, No. 3, 261--276 (2021; Zbl 1489.54019) Full Text: Link
Gao, Xiao-Yan; Khalil, Ahmed Mostafa More on \(\mathcal{D}\alpha \)-closed sets in topological spaces. (English) Zbl 1477.54001 J. Math. 2021, Article ID 5525739, 9 p. (2021). MSC: 54A05 54D10 54C08 PDF BibTeX XML Cite \textit{X.-Y. Gao} and \textit{A. M. Khalil}, J. Math. 2021, Article ID 5525739, 9 p. (2021; Zbl 1477.54001) Full Text: DOI
Tyagi, B. K.; Singh, Sumit; Bhardwaj, Manoj; Chauhan, Harsh V. S. Some strong forms of connectedness in topological spaces. (English) Zbl 1438.54034 J. Adv. Stud. Topol. 10, No. 1, 20-27 (2019). MSC: 54A05 54D05 PDF BibTeX XML Cite \textit{B. K. Tyagi} et al., J. Adv. Stud. Topol. 10, No. 1, 20--27 (2019; Zbl 1438.54034) Full Text: DOI
Ibrahim, Hariwan Z. On \(\alpha_(\gamma, \gamma')\)-separation axioms. (English) Zbl 1412.22003 Int. J. Anal. Appl. 16, No. 5, 775-782 (2018). MSC: 22A05 22A10 54C05 PDF BibTeX XML Cite \textit{H. Z. Ibrahim}, Int. J. Anal. Appl. 16, No. 5, 775--782 (2018; Zbl 1412.22003) Full Text: Link
Rosas, Ennis; Selvanayaki, Nataraj; Ilango, Gnanambal A note on \(\alpha grw\)-closed sets. (English) Zbl 1360.54005 Eur. J. Pure Appl. Math. 9, No. 1, 27-33 (2016). MSC: 54A05 PDF BibTeX XML Cite \textit{E. Rosas} et al., Eur. J. Pure Appl. Math. 9, No. 1, 27--33 (2016; Zbl 1360.54005) Full Text: Link
Abu Donia, H. M.; Abd Allah, M. A.; Nawar, A. S. Generalized \(\psi^{\ast}\)-closed sets in bitopological spaces. (English) Zbl 1329.54034 J. Egypt. Math. Soc. 23, No. 3, 527-534 (2015). MSC: 54E55 54C08 54D10 PDF BibTeX XML Cite \textit{H. M. Abu Donia} et al., J. Egypt. Math. Soc. 23, No. 3, 527--534 (2015; Zbl 1329.54034) Full Text: DOI
Roy, Bishwambhar Unification of almost regular, almost normal and mildly normal topological spaces. (English) Zbl 1272.54023 Demonstr. Math. 45, No. 4, 963-974 (2012). MSC: 54D15 54A05 54C08 PDF BibTeX XML Cite \textit{B. Roy}, Demonstr. Math. 45, No. 4, 963--974 (2012; Zbl 1272.54023) Full Text: DOI
Navaneethakrishnan, M.; Paulraj Joseph, J.; Sivaraj, D. \({\mathcal I}_g\)-normal and \({\mathcal I}_g\)-regular spaces. (English) Zbl 1240.54074 Acta Math. Hung. 125, No. 4, 327-340 (2009). Reviewer: Chariklia Kostadilaki (Thessaloniki) MSC: 54D10 54D15 PDF BibTeX XML Cite \textit{M. Navaneethakrishnan} et al., Acta Math. Hung. 125, No. 4, 327--340 (2009; Zbl 1240.54074) Full Text: DOI
Boonpok, Chawalit; Khampakdee, Jeeranunt Between closed sets and generalized closed sets in closure spaces. (English) Zbl 1195.54002 Acta Math. Univ. Ostrav. 16, No. 1, 3-14 (2008). MSC: 54A05 PDF BibTeX XML Cite \textit{C. Boonpok} and \textit{J. Khampakdee}, Acta Math. Univ. Ostrav. 16, No. 1, 3--14 (2008; Zbl 1195.54002) Full Text: EuDML
Noiri, Takashi The further unified theory for modifications of \(g\)-closed sets. (English) Zbl 1179.54004 Rend. Circ. Mat. Palermo (2) 57, No. 3, 411-421 (2008). Reviewer: K. Chandrasekhara Rao (Kumbakonam) MSC: 54A05 54D10 PDF BibTeX XML Cite \textit{T. Noiri}, Rend. Circ. Mat. Palermo (2) 57, No. 3, 411--421 (2008; Zbl 1179.54004) Full Text: DOI
Jafari, S.; Thivagar, M. L.; Ponmani, S. A. On ultra \(\alpha \) -countable dense homogeneous spaces. (English) Zbl 1167.54309 Lobachevskii J. Math. 29, No. 1, 9-13 (2008). MSC: 54E55 PDF BibTeX XML Cite \textit{S. Jafari} et al., Lobachevskii J. Math. 29, No. 1, 9--13 (2008; Zbl 1167.54309) Full Text: DOI
Noiri, Takashi A unified theory for modifications of \(g\)-closed sets. (English) Zbl 1196.54002 Rend. Circ. Mat. Palermo (2) 56, No. 2, 171-184 (2007). MSC: 54A05 PDF BibTeX XML Cite \textit{T. Noiri}, Rend. Circ. Mat. Palermo (2) 56, No. 2, 171--184 (2007; Zbl 1196.54002) Full Text: DOI
Caldas, M.; Jafari, S.; Noiri, T.; Saraf, R. K. Weak and strong forms of \(\alpha\)-irresolute maps. (English) Zbl 1064.54021 Chaos Solitons Fractals 24, No. 1, 223-228 (2005). MSC: 54C08 54C10 54D05 PDF BibTeX XML Cite \textit{M. Caldas} et al., Chaos Solitons Fractals 24, No. 1, 223--228 (2005; Zbl 1064.54021) Full Text: DOI
Cao, Jiling; Ganster, Maximilian; Reilly, Ivan On generalized closed sets. (English) Zbl 1020.54001 Topology Appl. 123, No. 1, 37-46 (2002). Reviewer: Mukherjee MSC: 54A05 54D10 54F65 PDF BibTeX XML Cite \textit{J. Cao} et al., Topology Appl. 123, No. 1, 37--46 (2002; Zbl 1020.54001) Full Text: DOI