Zavalnyuk, E. Steiner ratio for Hadamard surfaces of curvature at most \(k < 0\). (English. Russian original) Zbl 1309.53036 J. Math. Sci., New York 203, No. 6, 777-788 (2014); translation from Fundam. Prikl. Mat. 18, No. 2, 35-51 (2013). MSC: 53C20 05C10 53C45 51H99 PDF BibTeX XML Cite \textit{E. Zavalnyuk}, J. Math. Sci., New York 203, No. 6, 777--788 (2014; Zbl 1309.53036); translation from Fundam. Prikl. Mat. 18, No. 2, 35--51 (2013) Full Text: DOI OpenURL
Innami, N.; Kim, B. H.; Mashiko, Y.; Shiohama, K. The Steiner ratio conjecture of Gilbert-Pollak may still be open. (English) Zbl 1220.05120 Algorithmica 57, No. 4, 869-872 (2010). MSC: 05C85 52B55 68R10 PDF BibTeX XML Cite \textit{N. Innami} et al., Algorithmica 57, No. 4, 869--872 (2010; Zbl 1220.05120) Full Text: DOI OpenURL
Innami, Nobuhiro; Kim, Byung Hak Steiner ratio for hyperbolic surfaces. (English) Zbl 1114.53034 Proc. Japan Acad., Ser. A 82, No. 6, 77-79 (2006). Reviewer: Richard Koch (München) MSC: 53C20 05C05 PDF BibTeX XML Cite \textit{N. Innami} and \textit{B. H. Kim}, Proc. Japan Acad., Ser. A 82, No. 6, 77--79 (2006; Zbl 1114.53034) Full Text: DOI Euclid OpenURL
Chen, D.; Du, D.-Z.; Hu, X.-D.; Lin, G.-H.; Wang, L. Approximations for Steiner trees with minimum number of Steiner points. (English) Zbl 0983.68140 Theor. Comput. Sci. 262, No. 1-2, 83-99 (2001). MSC: 68R10 68W35 PDF BibTeX XML Cite \textit{D. Chen} et al., Theor. Comput. Sci. 262, No. 1--2, 83--99 (2001; Zbl 0983.68140) Full Text: DOI OpenURL