Guo, Ruihan; Filbet, Francis A \(p\)-adaptive local discontinuous Galerkin level set method for Willmore flow. (English) Zbl 1397.65187 J. Sci. Comput. 76, No. 2, 1148-1167 (2018). MSC: 65M60 65L06 53A05 35Q35 76A05 PDF BibTeX XML Cite \textit{R. Guo} and \textit{F. Filbet}, J. Sci. Comput. 76, No. 2, 1148--1167 (2018; Zbl 1397.65187) Full Text: DOI
Xu, Yan; Shu, Chi-Wang Local discontinuous Galerkin method for surface diffusion and Willmore flow of graphs. (English) Zbl 1203.65190 J. Sci. Comput. 40, No. 1-3, 375-390 (2009). MSC: 65M60 05C90 PDF BibTeX XML Cite \textit{Y. Xu} and \textit{C.-W. Shu}, J. Sci. Comput. 40, No. 1--3, 375--390 (2009; Zbl 1203.65190) Full Text: DOI
Beneš, Michal; Mikula, Karol; Oberhuber, Tomáš; Ševčovič, Daniel Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed planar curves. (English) Zbl 1213.35033 Comput. Vis. Sci. 12, No. 6, 307-317 (2009). MSC: 35A35 35K55 PDF BibTeX XML Cite \textit{M. Beneš} et al., Comput. Vis. Sci. 12, No. 6, 307--317 (2009; Zbl 1213.35033) Full Text: DOI
Oberhuber, Tomás Finite difference scheme for the Willmore flow of graphs. (English) Zbl 1140.53032 Kybernetika 43, No. 6, 855-867 (2007). MSC: 53C44 65M12 65M20 74S20 35K35 35K55 PDF BibTeX XML Cite \textit{T. Oberhuber}, Kybernetika 43, No. 6, 855--867 (2007; Zbl 1140.53032) Full Text: Link EuDML