Liu, Ji A two-dimensional Keller-Segel-Navier-Stokes system with logarithmic sensitivity: generalized solutions and classical solutions. (English) Zbl 07620709 Calc. Var. Partial Differ. Equ. 62, No. 1, Paper No. 23, 37 p. (2023). MSC: 35D30 35A09 35K51 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{J. Liu}, Calc. Var. Partial Differ. Equ. 62, No. 1, Paper No. 23, 37 p. (2023; Zbl 07620709) Full Text: DOI OpenURL
Kurt, Halil Ibrahim; Shen, Wenxian Chemotaxis systems with singular sensitivity and logistic source: boundedness, persistence, absorbing set, and entire solutions. (English) Zbl 1501.35066 Nonlinear Anal., Real World Appl. 69, Article ID 103762, 27 p. (2023). MSC: 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{H. I. Kurt} and \textit{W. Shen}, Nonlinear Anal., Real World Appl. 69, Article ID 103762, 27 p. (2023; Zbl 1501.35066) Full Text: DOI arXiv OpenURL
Rodriguez, Nancy; Winkler, Michael On the global existence and qualitative behaviour of one-dimensional solutions to a model for urban crime. (English) Zbl 07629707 Eur. J. Appl. Math. 33, No. 5, 919-959 (2022). MSC: 35Q91 35B40 35K55 91D10 35A01 35A09 PDF BibTeX XML Cite \textit{N. Rodriguez} and \textit{M. Winkler}, Eur. J. Appl. Math. 33, No. 5, 919--959 (2022; Zbl 07629707) Full Text: DOI arXiv OpenURL
Jiang, Jie On a repulsion Keller-Segel system with a logarithmic sensitivity. (English) Zbl 07629681 Eur. J. Appl. Math. 33, No. 1, 153-181 (2022). MSC: 35B35 35D30 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{J. Jiang}, Eur. J. Appl. Math. 33, No. 1, 153--181 (2022; Zbl 07629681) Full Text: DOI arXiv OpenURL
Wu, Chun Boundedness in a chemotaxis-consumption system with singular sensitivity. (English) Zbl 1501.35075 Result. Math. 77, No. 6, Paper No. 234, 31 p. (2022). MSC: 35B40 35K51 35K59 92C17 35Q92 PDF BibTeX XML Cite \textit{C. Wu}, Result. Math. 77, No. 6, Paper No. 234, 31 p. (2022; Zbl 1501.35075) Full Text: DOI OpenURL
Jiang, Jie Boundedness and exponential stabilization in a parabolic-elliptic Keller-Segel model with signal-dependent motilities for local sensing chemotaxis. (English) Zbl 07562281 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 3, 825-846 (2022). MSC: 35B60 35K20 35K65 35M33 35Q92 PDF BibTeX XML Cite \textit{J. Jiang}, Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 3, 825--846 (2022; Zbl 07562281) Full Text: DOI arXiv OpenURL
Winkler, Michael Unlimited growth in logarithmic Keller-Segel systems. (English) Zbl 1480.35383 J. Differ. Equations 309, 74-97 (2022). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B44 35B25 35K59 92C17 PDF BibTeX XML Cite \textit{M. Winkler}, J. Differ. Equations 309, 74--97 (2022; Zbl 1480.35383) Full Text: DOI OpenURL
Du, Wanjuan Asymptotic behavior of solutions to a logistic chemotaxis system with singular sensitivity. (English) Zbl 1499.35094 J. Math. Res. Appl. 41, No. 5, 473-480 (2021). MSC: 35B40 35K55 92C17 PDF BibTeX XML Cite \textit{W. Du}, J. Math. Res. Appl. 41, No. 5, 473--480 (2021; Zbl 1499.35094) Full Text: DOI OpenURL
Fujie, Kentaro; Jiang, Jie Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities. (English) Zbl 1478.35035 Acta Appl. Math. 176, Paper No. 3, 36 p. (2021). MSC: 35B40 35K51 35K59 35K65 92C17 PDF BibTeX XML Cite \textit{K. Fujie} and \textit{J. Jiang}, Acta Appl. Math. 176, Paper No. 3, 36 p. (2021; Zbl 1478.35035) Full Text: DOI arXiv OpenURL
Jiang, Jie; Laurençot, Philippe Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility. (English) Zbl 1472.35401 J. Differ. Equations 299, 513-541 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K65 35B40 35B51 PDF BibTeX XML Cite \textit{J. Jiang} and \textit{P. Laurençot}, J. Differ. Equations 299, 513--541 (2021; Zbl 1472.35401) Full Text: DOI arXiv OpenURL
Wang, Zhi-An; Zheng, Jiashan Global boundedness of the fully parabolic Keller-Segel system with signal-dependent motilities. (English) Zbl 1469.35113 Acta Appl. Math. 171, Paper No. 25, 20 p. (2021). MSC: 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Z.-A. Wang} and \textit{J. Zheng}, Acta Appl. Math. 171, Paper No. 25, 20 p. (2021; Zbl 1469.35113) Full Text: DOI arXiv OpenURL
Wang, Yizhuo; Guo, Shangjiang Dynamics for a two-species competitive Keller-Segel chemotaxis system with a free boundary. (English) Zbl 1467.35362 J. Math. Anal. Appl. 502, No. 2, Article ID 125259, 39 p. (2021). MSC: 35R35 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{S. Guo}, J. Math. Anal. Appl. 502, No. 2, Article ID 125259, 39 p. (2021; Zbl 1467.35362) Full Text: DOI OpenURL
Viglialoro, Giuseppe Global in time and bounded solutions to a parabolic-elliptic chemotaxis system with nonlinear diffusion and signal-dependent sensitivity. (English) Zbl 1465.35006 Appl. Math. Optim. 83, No. 2, 979-1004 (2021). MSC: 35A01 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{G. Viglialoro}, Appl. Math. Optim. 83, No. 2, 979--1004 (2021; Zbl 1465.35006) Full Text: DOI OpenURL
Ahn, Jaewook; Kang, Kyungkeun; Lee, Jihoon Global well-posedness of logarithmic Keller-Segel type systems. (English) Zbl 1464.35348 J. Differ. Equations 287, 185-211 (2021). MSC: 35Q92 35Q91 92C17 91D10 35K57 35B40 35B65 35A09 35A01 35A02 PDF BibTeX XML Cite \textit{J. Ahn} et al., J. Differ. Equations 287, 185--211 (2021; Zbl 1464.35348) Full Text: DOI arXiv OpenURL
Kurt, Halil Ibrahim; Shen, Wenxian Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. (English) Zbl 1455.35269 SIAM J. Math. Anal. 53, No. 1, 973-1003 (2021). MSC: 35Q92 92C17 35K55 35B44 35K51 35K57 PDF BibTeX XML Cite \textit{H. I. Kurt} and \textit{W. Shen}, SIAM J. Math. Anal. 53, No. 1, 973--1003 (2021; Zbl 1455.35269) Full Text: DOI arXiv OpenURL
Viglialoro, Giuseppe; Woolley, Thomas E. Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production. (English) Zbl 1447.35009 Appl. Anal. 99, No. 14, 2507-2525 (2020). MSC: 35A01 35K59 92C17 35K51 PDF BibTeX XML Cite \textit{G. Viglialoro} and \textit{T. E. Woolley}, Appl. Anal. 99, No. 14, 2507--2525 (2020; Zbl 1447.35009) Full Text: DOI arXiv OpenURL
Lankeit, Johannes; Viglialoro, Giuseppe Global existence and boundedness of solutions to a chemotaxis-consumption model with singular sensitivity. (English) Zbl 1439.35243 Acta Appl. Math. 167, 75-97 (2020). MSC: 35K55 35Q92 35A01 35K51 92C17 PDF BibTeX XML Cite \textit{J. Lankeit} and \textit{G. Viglialoro}, Acta Appl. Math. 167, 75--97 (2020; Zbl 1439.35243) Full Text: DOI arXiv Link OpenURL
Fujie, Kentarou; Jiang, Jie Global existence for a kinetic model of pattern formation with density-suppressed motilities. (English) Zbl 1440.35330 J. Differ. Equations 269, No. 6, 5338-5378 (2020). MSC: 35Q92 35B36 35K59 35B44 92C17 PDF BibTeX XML Cite \textit{K. Fujie} and \textit{J. Jiang}, J. Differ. Equations 269, No. 6, 5338--5378 (2020; Zbl 1440.35330) Full Text: DOI arXiv OpenURL
Liu, Dongmei Global solutions in a fully parabolic chemotaxis system with singular sensitivity and nonlinear signal production. (English) Zbl 1439.92043 J. Math. Phys. 61, No. 2, 021503, 4 p. (2020). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{D. Liu}, J. Math. Phys. 61, No. 2, 021503, 4 p. (2020; Zbl 1439.92043) Full Text: DOI OpenURL
Lankeit, Johannes Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. (English) Zbl 1439.92042 Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 233-255 (2020). MSC: 92C17 35Q92 35K55 PDF BibTeX XML Cite \textit{J. Lankeit}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 233--255 (2020; Zbl 1439.92042) Full Text: DOI arXiv OpenURL
Black, Tobias Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. (English) Zbl 1439.35486 Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 119-137 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35D99 35K55 92C17 35A01 PDF BibTeX XML Cite \textit{T. Black}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 2, 119--137 (2020; Zbl 1439.35486) Full Text: DOI arXiv OpenURL
Lankeit, Johannes; Winkler, Michael Facing low regularity in chemotaxis systems. (English) Zbl 1436.92004 Jahresber. Dtsch. Math.-Ver. 122, No. 1, 35-64 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 92C17 35Q92 35B44 35K55 PDF BibTeX XML Cite \textit{J. Lankeit} and \textit{M. Winkler}, Jahresber. Dtsch. Math.-Ver. 122, No. 1, 35--64 (2020; Zbl 1436.92004) Full Text: DOI OpenURL
Jiang, Jie Global stability of Keller-Segel systems in critical Lebesgue spaces. (English) Zbl 1427.35108 Discrete Contin. Dyn. Syst. 40, No. 1, 609-634 (2020). MSC: 35K51 35K59 35Q92 92C17 PDF BibTeX XML Cite \textit{J. Jiang}, Discrete Contin. Dyn. Syst. 40, No. 1, 609--634 (2020; Zbl 1427.35108) Full Text: DOI arXiv OpenURL
Ahn, Jaewook; Kang, Kyungkeun; Lee, Jihoon Eventual smoothness and stabilization of global weak solutions in parabolic-elliptic chemotaxis systems with logarithmic sensitivity. (English) Zbl 1437.35060 Nonlinear Anal., Real World Appl. 49, 312-330 (2019). MSC: 35B40 35B65 35K51 35K58 92C17 PDF BibTeX XML Cite \textit{J. Ahn} et al., Nonlinear Anal., Real World Appl. 49, 312--330 (2019; Zbl 1437.35060) Full Text: DOI OpenURL
Ding, Mengyao; Wang, Wei; Zhou, Shulin Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source. (English) Zbl 1437.35118 Nonlinear Anal., Real World Appl. 49, 286-311 (2019). MSC: 35B45 35K51 35K58 92C17 PDF BibTeX XML Cite \textit{M. Ding} et al., Nonlinear Anal., Real World Appl. 49, 286--311 (2019; Zbl 1437.35118) Full Text: DOI OpenURL
Karmakar, Debabrata; Wolansky, Gershon On Patlak-Keller-Segel system for several populations: a gradient flow approach. (English) Zbl 1422.35125 J. Differ. Equations 267, No. 12, 7483-7520 (2019). MSC: 35K65 35K40 35Q92 PDF BibTeX XML Cite \textit{D. Karmakar} and \textit{G. Wolansky}, J. Differ. Equations 267, No. 12, 7483--7520 (2019; Zbl 1422.35125) Full Text: DOI arXiv OpenURL
Jiang, Jie Global stability of homogeneous steady states in scaling-invariant spaces for a Keller-Segel-Navier-Stokes system. (English) Zbl 1416.35274 J. Differ. Equations 267, No. 2, 659-692 (2019). MSC: 35Q92 35B35 35Q30 35B44 35A09 92C17 PDF BibTeX XML Cite \textit{J. Jiang}, J. Differ. Equations 267, No. 2, 659--692 (2019; Zbl 1416.35274) Full Text: DOI OpenURL
Lankeit, Elisa; Lankeit, Johannes Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption. (English) Zbl 1414.35239 Nonlinear Anal., Real World Appl. 46, 421-445 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B40 PDF BibTeX XML Cite \textit{E. Lankeit} and \textit{J. Lankeit}, Nonlinear Anal., Real World Appl. 46, 421--445 (2019; Zbl 1414.35239) Full Text: DOI arXiv OpenURL
Mizukami, Masaaki The fast signal diffusion limit in a Keller-Segel system. (English) Zbl 1414.35242 J. Math. Anal. Appl. 472, No. 2, 1313-1330 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B30 92C17 PDF BibTeX XML Cite \textit{M. Mizukami}, J. Math. Anal. Appl. 472, No. 2, 1313--1330 (2019; Zbl 1414.35242) Full Text: DOI arXiv OpenURL
Khelghati, Ali; Baghaei, Khadijeh Boundedness of classical solutions for a chemotaxis system with general sensitivity function. (English) Zbl 07024360 Appl. Anal. 98, No. 3, 611-621 (2019). MSC: 35Kxx PDF BibTeX XML Cite \textit{A. Khelghati} and \textit{K. Baghaei}, Appl. Anal. 98, No. 3, 611--621 (2019; Zbl 07024360) Full Text: DOI OpenURL
Zheng, Pan; Mu, Chunlai; Willie, Robert; Hu, Xuegang Global asymptotic stability of steady states in a chemotaxis-growth system with singular sensitivity. (English) Zbl 1409.35103 Comput. Math. Appl. 75, No. 5, 1667-1675 (2018). MSC: 35K51 92C17 35B35 35B40 PDF BibTeX XML Cite \textit{P. Zheng} et al., Comput. Math. Appl. 75, No. 5, 1667--1675 (2018; Zbl 1409.35103) Full Text: DOI OpenURL
Black, Tobias; Lankeit, Johannes; Mizukami, Masaaki Singular sensitivity in a Keller-Segel-fluid system. (English) Zbl 1402.35006 J. Evol. Equ. 18, No. 2, 561-581 (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35A01 35Q30 35Q92 92C17 35K51 PDF BibTeX XML Cite \textit{T. Black} et al., J. Evol. Equ. 18, No. 2, 561--581 (2018; Zbl 1402.35006) Full Text: DOI arXiv OpenURL
Zhigun, Anna Generalised supersolutions with mass control for the Keller-Segel system with logarithmic sensitivity. (English) Zbl 1398.35112 J. Math. Anal. Appl. 467, No. 2, 1270-1286 (2018). MSC: 35K51 PDF BibTeX XML Cite \textit{A. Zhigun}, J. Math. Anal. Appl. 467, No. 2, 1270--1286 (2018; Zbl 1398.35112) Full Text: DOI arXiv Link OpenURL
Winkler, Michael A critical blow-up exponent in a chemotaxis system with nonlinear signal production. (English) Zbl 1391.35240 Nonlinearity 31, No. 5, 2031-2056 (2018). MSC: 35K65 35Q92 35B44 35B33 92C17 PDF BibTeX XML Cite \textit{M. Winkler}, Nonlinearity 31, No. 5, 2031--2056 (2018; Zbl 1391.35240) Full Text: DOI Link OpenURL
Fujie, Kentarou; Senba, Takasi A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system. (English) Zbl 1397.35122 Nonlinearity 31, No. 4, 1639-1672 (2018). Reviewer: Andrey Zahariev (Plovdiv) MSC: 35K45 35B45 35Q92 92C17 PDF BibTeX XML Cite \textit{K. Fujie} and \textit{T. Senba}, Nonlinearity 31, No. 4, 1639--1672 (2018; Zbl 1397.35122) Full Text: DOI OpenURL
Winkler, Michael; Yokota, Tomomi Stabilization in the logarithmic Keller-Segel system. (English) Zbl 1391.35066 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170, 123-141 (2018). MSC: 35B40 35K65 92C17 35K51 PDF BibTeX XML Cite \textit{M. Winkler} and \textit{T. Yokota}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170, 123--141 (2018; Zbl 1391.35066) Full Text: DOI OpenURL
Ding, Mengyao Global boundedness in a fully parabolic quasilinear chemotaxis system with singular sensitivity. (English) Zbl 1429.35038 J. Math. Anal. Appl. 461, No. 2, 1260-1270 (2018). Reviewer: Yuanyuan Ke (Beijing) MSC: 35B45 35K51 35B44 92C17 35K59 35Q92 PDF BibTeX XML Cite \textit{M. Ding}, J. Math. Anal. Appl. 461, No. 2, 1260--1270 (2018; Zbl 1429.35038) Full Text: DOI OpenURL
Huang, Ziqian; Zhu, Junming Blow-up for the solutions to nonlinear parabolic-elliptic system modeling chemotaxis. (English) Zbl 1375.35055 Int. J. Biomath. 10, No. 7, Article ID 1750102, 13 p. (2017). MSC: 35B44 35B40 35K51 92C17 PDF BibTeX XML Cite \textit{Z. Huang} and \textit{J. Zhu}, Int. J. Biomath. 10, No. 7, Article ID 1750102, 13 p. (2017; Zbl 1375.35055) Full Text: DOI OpenURL
Yoon, Changwook; Kim, Yong-Jung Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion. (English) Zbl 1398.35110 Acta Appl. Math. 149, No. 1, 101-123 (2017). MSC: 35K51 35B35 35Q84 PDF BibTeX XML Cite \textit{C. Yoon} and \textit{Y.-J. Kim}, Acta Appl. Math. 149, No. 1, 101--123 (2017; Zbl 1398.35110) Full Text: DOI OpenURL
Lankeit, Johannes; Winkler, Michael A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data. (English) Zbl 1373.35166 NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 4, Paper No. 49, 33 p. (2017). MSC: 35K55 35D99 92C17 PDF BibTeX XML Cite \textit{J. Lankeit} and \textit{M. Winkler}, NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 4, Paper No. 49, 33 p. (2017; Zbl 1373.35166) Full Text: DOI arXiv OpenURL
Cho, C.-H. A numerical algorithm for blow-up problems revisited. (English) Zbl 1376.65113 Numer. Algorithms 75, No. 3, 675-697 (2017). Reviewer: T. C. Mohan (Chennai) MSC: 65M06 35K55 65J08 PDF BibTeX XML Cite \textit{C. H. Cho}, Numer. Algorithms 75, No. 3, 675--697 (2017; Zbl 1376.65113) Full Text: DOI OpenURL
Wang, Wei; Li, Yan; Yu, Hao Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. (English) Zbl 1371.35007 Discrete Contin. Dyn. Syst., Ser. B 22, No. 10, 3663-3669 (2017). MSC: 35B35 35B40 35K55 92C17 PDF BibTeX XML Cite \textit{W. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 22, No. 10, 3663--3669 (2017; Zbl 1371.35007) Full Text: DOI OpenURL
Tao, Youshan; Winkler, Michael Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. (English) Zbl 06761738 Math. Models Methods Appl. Sci. 27, No. 9, 1645-1683 (2017). MSC: 35A01 35B40 35B65 35K55 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Math. Models Methods Appl. Sci. 27, No. 9, 1645--1683 (2017; Zbl 06761738) Full Text: DOI OpenURL
Wang, Wei; Ding, Mengyao; Li, Yan Global boundedness in a quasilinear chemotaxis system with general density-signal governed sensitivity. (English) Zbl 1367.35039 J. Differ. Equations 263, No. 5, 2851-2873 (2017). MSC: 35B40 35B35 35K55 92C17 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Differ. Equations 263, No. 5, 2851--2873 (2017; Zbl 1367.35039) Full Text: DOI OpenURL
Che, Jiahang; Chen, Li; Göttlich, Simone; Pandey, Anamika; Wang, Jing Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. (English) Zbl 1364.35379 Commun. Pure Appl. Anal. 16, No. 3, 1013-1036 (2017). MSC: 35Q92 35C20 92C17 PDF BibTeX XML Cite \textit{J. Che} et al., Commun. Pure Appl. Anal. 16, No. 3, 1013--1036 (2017; Zbl 1364.35379) Full Text: DOI OpenURL
Lankeit, Johannes Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. (English) Zbl 1359.35103 J. Differ. Equations 262, No. 7, 4052-4084 (2017). MSC: 35K59 35Q92 35A01 35K65 92C17 PDF BibTeX XML Cite \textit{J. Lankeit}, J. Differ. Equations 262, No. 7, 4052--4084 (2017; Zbl 1359.35103) Full Text: DOI arXiv OpenURL
Zhou, Guanyu; Saito, Norikazu Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis. (English) Zbl 1360.65225 Numer. Math. 135, No. 1, 265-311 (2017). Reviewer: Ivan Secrieru (Chişinău) MSC: 65M08 65M15 35M33 PDF BibTeX XML Cite \textit{G. Zhou} and \textit{N. Saito}, Numer. Math. 135, No. 1, 265--311 (2017; Zbl 1360.65225) Full Text: DOI OpenURL
Deleuze, Yannick; Chiang, Chen-Yu; Thiriet, Marc; Sheu, Tony W. H. Numerical study of plume patterns in a chemotaxis-diffusion-convection coupling system. (English) Zbl 1390.76305 Comput. Fluids 126, 58-70 (2016). MSC: 76M10 65M60 76D05 76Rxx 35Q35 35Q92 92C17 PDF BibTeX XML Cite \textit{Y. Deleuze} et al., Comput. Fluids 126, 58--70 (2016; Zbl 1390.76305) Full Text: DOI arXiv OpenURL
Wu, Sainan; Wu, Boying Global boundedness in a quasilinear attraction-repulsion chemotaxis model with nonlinear sensitivity. (English) Zbl 1339.35068 J. Math. Anal. Appl. 442, No. 2, 554-582 (2016). MSC: 35B45 35K51 92C17 35K58 PDF BibTeX XML Cite \textit{S. Wu} and \textit{B. Wu}, J. Math. Anal. Appl. 442, No. 2, 554--582 (2016; Zbl 1339.35068) Full Text: DOI OpenURL
Cao, Junhong; Wang, Wei; Yu, Hao Asymptotic behavior of solutions to two-dimensional chemotaxis system with logistic source and singular sensitivity. (English) Zbl 1331.35047 J. Math. Anal. Appl. 436, No. 1, 382-392 (2016). MSC: 35B40 92C17 PDF BibTeX XML Cite \textit{J. Cao} et al., J. Math. Anal. Appl. 436, No. 1, 382--392 (2016; Zbl 1331.35047) Full Text: DOI OpenURL
Senba, Takasi; Fujie, Kentarou Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. (English) Zbl 1330.35051 Discrete Contin. Dyn. Syst., Ser. B 21, No. 1, 81-102 (2016). MSC: 35B45 35K55 92C17 PDF BibTeX XML Cite \textit{T. Senba} and \textit{K. Fujie}, Discrete Contin. Dyn. Syst., Ser. B 21, No. 1, 81--102 (2016; Zbl 1330.35051) Full Text: DOI OpenURL
Wang, Jinhuan; Chen, Li; Hong, Liang Parabolic elliptic type Keller-Segel system on the whole space case. (English) Zbl 1326.35408 Discrete Contin. Dyn. Syst. 36, No. 2, 1061-1084 (2016). MSC: 35Q92 35B45 35A01 35B44 92C17 35B33 35M10 PDF BibTeX XML Cite \textit{J. Wang} et al., Discrete Contin. Dyn. Syst. 36, No. 2, 1061--1084 (2016; Zbl 1326.35408) Full Text: DOI OpenURL
Chen, Haohao; Tong, Bo; Wang, Qi Existence and stability of nonconstant positive steady states of morphogenesis models. (English) Zbl 1336.92011 Math. Methods Appl. Sci. 38, No. 17, 3833-3850 (2015). MSC: 92C15 35B35 PDF BibTeX XML Cite \textit{H. Chen} et al., Math. Methods Appl. Sci. 38, No. 17, 3833--3850 (2015; Zbl 1336.92011) Full Text: DOI arXiv OpenURL
Zheng, Pan; Mu, Chunlai; Hu, Xuegang; Zhang, Qinghua Global boundedness in a quasilinear chemotaxis system with signal-dependent sensitivity. (English) Zbl 06440060 J. Math. Anal. Appl. 428, No. 1, 508-524 (2015). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{P. Zheng} et al., J. Math. Anal. Appl. 428, No. 1, 508--524 (2015; Zbl 06440060) Full Text: DOI OpenURL
Fujie, Kentarou; Winkler, Michael; Yokota, Tomomi Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity. (English) Zbl 1329.35011 Math. Methods Appl. Sci. 38, No. 6, 1212-1224 (2015). Reviewer: Christian Stinner (München) MSC: 35A09 35A01 35K55 92C17 35K59 PDF BibTeX XML Cite \textit{K. Fujie} et al., Math. Methods Appl. Sci. 38, No. 6, 1212--1224 (2015; Zbl 1329.35011) Full Text: DOI OpenURL
Wang, Qi Global solutions of a Keller-Segel system with saturated logarithmic sensitivity function. (English) Zbl 1335.92015 Commun. Pure Appl. Anal. 14, No. 2, 383-396 (2015). Reviewer: Piotr Biler (Wroclaw) MSC: 92C17 35Q92 35K55 35B40 PDF BibTeX XML Cite \textit{Q. Wang}, Commun. Pure Appl. Anal. 14, No. 2, 383--396 (2015; Zbl 1335.92015) Full Text: DOI arXiv OpenURL
Wang, Qi Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. (English) Zbl 1325.92019 Discrete Contin. Dyn. Syst., Ser. B 20, No. 4, 1231-1250 (2015). MSC: 92C17 35K51 35K57 PDF BibTeX XML Cite \textit{Q. Wang}, Discrete Contin. Dyn. Syst., Ser. B 20, No. 4, 1231--1250 (2015; Zbl 1325.92019) Full Text: DOI arXiv OpenURL
Hong, Liang; Wang, Wei; Zheng, Sining Global existence versus blow-up in a high dimensional Keller-Segel equation with degenerate diffusion and nonlocal aggregation. (English) Zbl 1323.35097 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 116, 1-18 (2015). Reviewer: Christian Stinner (München) MSC: 35K65 92C17 35B44 35B45 PDF BibTeX XML Cite \textit{L. Hong} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 116, 1--18 (2015; Zbl 1323.35097) Full Text: DOI OpenURL
Fujie, Kentarou Boundedness in a fully parabolic chemotaxis system with singular sensitivity. (English) Zbl 1310.35144 J. Math. Anal. Appl. 424, No. 1, 675-684 (2015). MSC: 35K51 92C17 35K58 PDF BibTeX XML Cite \textit{K. Fujie}, J. Math. Anal. Appl. 424, No. 1, 675--684 (2015; Zbl 1310.35144) Full Text: DOI OpenURL
Dejak, S. I.; Egli, D.; Lushnikov, P. M.; Sigal, I. M. On blowup dynamics in the Keller-Segel model of chemotaxis. (English) Zbl 1326.35049 St. Petersbg. Math. J. 25, No. 4, 547-574 (2014) and Algebra Anal. 25, No. 4, 47-84 (2013). MSC: 35B44 35K51 35K57 35Q84 92C17 PDF BibTeX XML Cite \textit{S. I. Dejak} et al., St. Petersbg. Math. J. 25, No. 4, 547--574 (2014; Zbl 1326.35049) Full Text: DOI arXiv OpenURL
Fujie, Kentarou; Winkler, Michael; Yokota, Tomomi Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity. (English) Zbl 1297.35051 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 109, 56-71 (2014). MSC: 35B44 35K59 35B35 35B45 92C17 PDF BibTeX XML Cite \textit{K. Fujie} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 109, 56--71 (2014; Zbl 1297.35051) Full Text: DOI OpenURL
Deleuze, Yannick A mathematical model of mast cell response to acupuncture needling. (English) Zbl 1270.35130 C. R., Math., Acad. Sci. Paris 351, No. 3-4, 101-105 (2013). MSC: 35B44 92C17 35K45 35K58 PDF BibTeX XML Cite \textit{Y. Deleuze}, C. R., Math., Acad. Sci. Paris 351, No. 3--4, 101--105 (2013; Zbl 1270.35130) Full Text: DOI Link OpenURL
Chen, Hua; Li, Junfeng; Liu, Weian Global and non-global solutions to some chemotaxis models. (English) Zbl 1212.35483 Wuhan Univ. J. Nat. Sci. 14, No. 3, 189-193 (2009). MSC: 35Q92 92C17 PDF BibTeX XML Cite \textit{H. Chen} et al., Wuhan Univ. J. Nat. Sci. 14, No. 3, 189--193 (2009; Zbl 1212.35483) Full Text: DOI OpenURL
Corrias, Lucilla; Perthame, Benoît Critical space for the parabolic-parabolic Keller–Segel model in \(\mathbb R^{d}\). (English) Zbl 1097.35066 C. R., Math., Acad. Sci. Paris 342, No. 10, 745-750 (2006). MSC: 35K45 35K55 92C17 PDF BibTeX XML Cite \textit{L. Corrias} and \textit{B. Perthame}, C. R., Math., Acad. Sci. Paris 342, No. 10, 745--750 (2006; Zbl 1097.35066) Full Text: DOI OpenURL
Senba, Takasi; Suzuki, Takasi A quasi-linear parabolic system of chemotaxis. (English) Zbl 1134.35059 Abstr. Appl. Anal. 2006, Article ID 23061, 21 p. (2006). MSC: 35K50 35K55 35B40 92C17 PDF BibTeX XML Cite \textit{T. Senba} and \textit{T. Suzuki}, Abstr. Appl. Anal. 2006, Article ID 23061, 21 p. (2006; Zbl 1134.35059) Full Text: DOI EuDML OpenURL
Aida, Masashi; Osaki, Koichi; Tsujikawa, Tohru; Yagi, Atsushi; Mimura, Masayasu Chemotaxis and growth system with singular sensitivity function. (English) Zbl 1066.92004 Nonlinear Anal., Real World Appl. 6, No. 2, 323-336 (2005). MSC: 92C17 35K15 35B40 35Q92 PDF BibTeX XML Cite \textit{M. Aida} et al., Nonlinear Anal., Real World Appl. 6, No. 2, 323--336 (2005; Zbl 1066.92004) Full Text: DOI Link OpenURL
Horstmann, Dirk; Winkler, Michael Boundedness vs. blow-up in a chemotaxis system. (English) Zbl 1085.35065 J. Differ. Equations 215, No. 1, 52-107 (2005). Reviewer: Marek Fila (Bratislava) MSC: 35K50 92C17 35B40 35B33 PDF BibTeX XML Cite \textit{D. Horstmann} and \textit{M. Winkler}, J. Differ. Equations 215, No. 1, 52--107 (2005; Zbl 1085.35065) Full Text: DOI OpenURL
Perthame, Benoît PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. (English) Zbl 1099.35157 Appl. Math., Praha 49, No. 6, 539-564 (2004). MSC: 35Q80 35B40 92C17 35K65 35D05 PDF BibTeX XML Cite \textit{B. Perthame}, Appl. Math., Praha 49, No. 6, 539--564 (2004; Zbl 1099.35157) Full Text: DOI EuDML OpenURL
Dolbeault, Jean; Perthame, Benoît Optimal critical mass in the two dimensional Keller-Segel model in \(R^2\). (English. Abridged French version) Zbl 1056.35076 C. R., Math., Acad. Sci. Paris 339, No. 9, 611-616 (2004). MSC: 35K45 92C17 PDF BibTeX XML Cite \textit{J. Dolbeault} and \textit{B. Perthame}, C. R., Math., Acad. Sci. Paris 339, No. 9, 611--616 (2004; Zbl 1056.35076) Full Text: DOI OpenURL
Chen, Hua; He, Jinchun An exact formal solution to reaction-diffusion equations from biomathematics. (English) Zbl 1011.92011 Wuhan Univ. J. Nat. Sci. 7, No. 2, 127-132 (2002). MSC: 92C17 35K57 35Q92 PDF BibTeX XML Cite \textit{H. Chen} and \textit{J. He}, Wuhan Univ. J. Nat. Sci. 7, No. 2, 127--132 (2002; Zbl 1011.92011) Full Text: DOI OpenURL
Hillen, T.; Painter, K. Global existence for a parabolic chemotaxis model with prevention of overcrowding. (English) Zbl 0998.92006 Adv. Appl. Math. 26, No. 4, 280-301 (2001). MSC: 92C17 35K50 35K25 65C20 PDF BibTeX XML Cite \textit{T. Hillen} and \textit{K. Painter}, Adv. Appl. Math. 26, No. 4, 280--301 (2001; Zbl 0998.92006) Full Text: DOI Link OpenURL
Boy-Dalverny, A.; Madaune-Tort, M. Global solutions in tree dimensions for systems describing a chemotaxis phenomenon. (English) Zbl 1017.92005 Adv. Appl. Math. 26, No. 1, 63-88 (2001). MSC: 92C17 35Q92 35A05 PDF BibTeX XML Cite \textit{A. Boy-Dalverny} and \textit{M. Madaune-Tort}, Adv. Appl. Math. 26, No. 1, 63--88 (2001; Zbl 1017.92005) Full Text: DOI OpenURL
Nagai, Toshitaka; Senba, Takasi Behavior of radially symmetric solutions of a system related to chemotaxis. (English) Zbl 0891.35014 Nonlinear Anal., Theory Methods Appl. 30, No. 6, 3837-3842 (1997). MSC: 35B40 92C40 PDF BibTeX XML Cite \textit{T. Nagai} and \textit{T. Senba}, Nonlinear Anal., Theory Methods Appl. 30, No. 6, 3837--3842 (1997; Zbl 0891.35014) Full Text: DOI OpenURL