Calegari, Frank; Geraghty, David Minimal modularity lifting for nonregular symplectic representations. (English) Zbl 1441.11133 Duke Math. J. 169, No. 5, 801-896 (2020). Reviewer: Lei Yang (Beijing) MSC: 11F80 11F33 11F46 PDF BibTeX XML Cite \textit{F. Calegari} and \textit{D. Geraghty}, Duke Math. J. 169, No. 5, 801--896 (2020; Zbl 1441.11133) Full Text: DOI Euclid
Brown, Jim; Klosin, Krzysztof Congruence primes for automorphic forms on unitary groups and applications to the arithmetic of Ikeda lifts. (English) Zbl 1439.11119 Kyoto J. Math. 60, No. 1, 179-217 (2020). Reviewer: Goran Muić (Zagreb) MSC: 11F33 11F30 11F32 11F55 PDF BibTeX XML Cite \textit{J. Brown} and \textit{K. Klosin}, Kyoto J. Math. 60, No. 1, 179--217 (2020; Zbl 1439.11119) Full Text: DOI Euclid
Bergström, Jonas; Dummigan, Neil; Farmer, David; Koutsoliotas, Sally \(\mathrm{GL}_2\times \mathrm{GSp}_2\) \(L\)-values and Hecke eigenvalue congruences. (English. French summary) Zbl 1444.11076 J. Théor. Nombres Bordx. 31, No. 3, 751-775 (2019). MSC: 11F33 11F46 14G10 PDF BibTeX XML Cite \textit{J. Bergström} et al., J. Théor. Nombres Bordx. 31, No. 3, 751--775 (2019; Zbl 1444.11076) Full Text: DOI
Vu, An Hoa Hermitian Maass lift for general level. (English) Zbl 07005770 J. Number Theory 198, 250-292 (2019). MSC: 11F37 PDF BibTeX XML Cite \textit{A. H. Vu}, J. Number Theory 198, 250--292 (2019; Zbl 07005770) Full Text: DOI arXiv
Keaton, Rodney Level stripping for vector-valued Siegel modular forms of genus 2. (English) Zbl 1407.11064 Funct. Approximatio, Comment. Math. 54, No. 2, 251-274 (2016). MSC: 11F46 11F33 11F80 PDF BibTeX XML Cite \textit{R. Keaton}, Funct. Approximatio, Comment. Math. 54, No. 2, 251--274 (2016; Zbl 1407.11064) Full Text: DOI Euclid
Brown, Jim; Zantout, Dania Mixed-level Saito-Kurokawa liftings. (English) Zbl 1408.11031 Ramanujan J. 39, No. 2, 247-257 (2016). MSC: 11F32 11F12 11F46 PDF BibTeX XML Cite \textit{J. Brown} and \textit{D. Zantout}, Ramanujan J. 39, No. 2, 247--257 (2016; Zbl 1408.11031) Full Text: DOI
Agarwal, Mahesh; Brown, Jim Saito-Kurokawa lifts of square-free level. (English) Zbl 1326.11019 Kyoto J. Math. 55, No. 3, 641-662 (2015). Reviewer: Noburo Ishii (Kyoto) MSC: 11F46 11F32 11F67 11F66 PDF BibTeX XML Cite \textit{M. Agarwal} and \textit{J. Brown}, Kyoto J. Math. 55, No. 3, 641--662 (2015; Zbl 1326.11019) Full Text: DOI Euclid
Luu, Martin Deformation theory and local-global compatibility of Langlands correspondences. (English) Zbl 1396.11086 Mem. Am. Math. Soc. 1123, vii, 99 p. (2015). MSC: 11F80 11F55 PDF BibTeX XML Cite \textit{M. Luu}, Deformation theory and local-global compatibility of Langlands correspondences. Providence, RI: American Mathematical Society (AMS) (2015; Zbl 1396.11086) Full Text: DOI
Andreatta, Fabrizio; Iovita, Adrian; Pilloni, Vincent \(p\)-adic families of Siegel modular cuspforms. (English) Zbl 1394.11045 Ann. Math. (2) 181, No. 2, 623-697 (2015). Reviewer: Matteo Longo (Padova) MSC: 11F85 11F46 PDF BibTeX XML Cite \textit{F. Andreatta} et al., Ann. Math. (2) 181, No. 2, 623--697 (2015; Zbl 1394.11045) Full Text: DOI arXiv
Urban, Eric Nearly overconvergent modular forms. (English) Zbl 1328.11052 Bouganis, Thanasis (ed.) et al., Iwasawa theory 2012. State of the art and recent advances. Selected papers based on the presentations at the conference, Heidelberg, Germany, July 30 – August 3, 2012. Berlin: Springer (ISBN 978-3-642-55244-1/hbk; 978-3-642-55245-8/ebook). Contributions in Mathematical and Computational Sciences 7, 401-441 (2014). Reviewer: Ilker Inam (Bilecik) MSC: 11F37 11F25 11F85 PDF BibTeX XML Cite \textit{E. Urban}, Contrib. Math. Comput. Sci. 7, 401--441 (2014; Zbl 1328.11052) Full Text: DOI
Miyauchi, Michitaka; Yamauchi, Takuya An explicit computation of \(p\)-stabilized vectors. (English. French summary) Zbl 1369.11039 J. Théor. Nombres Bordx. 26, No. 2, 531-558 (2014). MSC: 11F85 22E50 PDF BibTeX XML Cite \textit{M. Miyauchi} and \textit{T. Yamauchi}, J. Théor. Nombres Bordx. 26, No. 2, 531--558 (2014; Zbl 1369.11039) Full Text: DOI Link arXiv
Agarwal, Mahesh; Brown, Jim On the Bloch-Kato conjecture for elliptic modular forms of square-free level. (English) Zbl 1302.11024 Math. Z. 276, No. 3-4, 889-924 (2014). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11F33 11F67 11F46 11F80 PDF BibTeX XML Cite \textit{M. Agarwal} and \textit{J. Brown}, Math. Z. 276, No. 3--4, 889--924 (2014; Zbl 1302.11024) Full Text: DOI
Skinner, Christopher; Urban, Eric The Iwasawa Main Conjectures for \(\mathrm{GL}_{2}\). (English) Zbl 1301.11074 Invent. Math. 195, No. 1, 1-277 (2014). Reviewer: Wei Feng (Beijing) MSC: 11R23 11F85 11G05 11F80 11F33 PDF BibTeX XML Cite \textit{C. Skinner} and \textit{E. Urban}, Invent. Math. 195, No. 1, 1--277 (2014; Zbl 1301.11074) Full Text: DOI
Agarwal, Mahesh; Klosin, Krzysztof Yoshida lifts and the Bloch-Kato conjecture for the convolution \(L\)-function. (English) Zbl 1294.11066 J. Number Theory 133, No. 8, 2496-2537 (2013). Reviewer: Zhengyu Mao (Newark) MSC: 11F67 11F33 11F46 PDF BibTeX XML Cite \textit{M. Agarwal} and \textit{K. Klosin}, J. Number Theory 133, No. 8, 2496--2537 (2013; Zbl 1294.11066) Full Text: DOI
Brown, Jim; Keaton, Rodney Level stripping for Siegel modular forms with reducible Galois representations. (English) Zbl 1284.11083 J. Number Theory 133, No. 5, 1492-1501 (2013). MSC: 11F46 11F80 PDF BibTeX XML Cite \textit{J. Brown} and \textit{R. Keaton}, J. Number Theory 133, No. 5, 1492--1501 (2013; Zbl 1284.11083) Full Text: DOI
Jorza, Andrei Galois representations for holomorphic Siegel modular forms. (English) Zbl 1298.11051 Math. Ann. 355, No. 1, 381-400 (2013). MSC: 11F80 11F46 11F70 11R39 PDF BibTeX XML Cite \textit{A. Jorza}, Math. Ann. 355, No. 1, 381--400 (2013; Zbl 1298.11051) Full Text: DOI
Bellaïche, Joël Ranks of Selmer groups in an analytic family. (English) Zbl 1365.11061 Trans. Am. Math. Soc. 364, No. 9, 4735-4761 (2012). Reviewer: Yongquan Hu (Rennes) MSC: 11F80 11F33 PDF BibTeX XML Cite \textit{J. Bellaïche}, Trans. Am. Math. Soc. 364, No. 9, 4735--4761 (2012; Zbl 1365.11061) Full Text: DOI
Virdol, Cristian The meromorphic continuation of the zeta function of Siegel modular threefolds over totally real fields. (English) Zbl 1320.11109 Funct. Approximatio, Comment. Math. 47, No. 2, 143-148 (2012). MSC: 11F41 11F80 11R42 11R80 PDF BibTeX XML Cite \textit{C. Virdol}, Funct. Approximatio, Comment. Math. 47, No. 2, 143--148 (2012; Zbl 1320.11109) Full Text: DOI Euclid
Böcherer, Siegfried; Dummigan, Neil; Schulze-Pillot, Rainer Yoshida lifts and Selmer groups. (English) Zbl 1276.11069 J. Math. Soc. Japan 64, No. 4, 1353-1405 (2012). MSC: 11F46 11F67 11F80 11F33 11G40 PDF BibTeX XML Cite \textit{S. Böcherer} et al., J. Math. Soc. Japan 64, No. 4, 1353--1405 (2012; Zbl 1276.11069) Full Text: DOI Euclid arXiv
Bellaïche, Joël Critical \(p\)-adic \(L\)-functions. (English) Zbl 1318.11067 Invent. Math. 189, No. 1, 1-60 (2012). Reviewer: Byoung Du Kim (Wellington) MSC: 11F67 11F85 11F66 11F03 PDF BibTeX XML Cite \textit{J. Bellaïche}, Invent. Math. 189, No. 1, 1--60 (2012; Zbl 1318.11067) Full Text: DOI
Pilloni, Vincent Modularity, Siegel forms and abelian surfaces. (Modularité, formes de Siegel et surfaces abéliennes.) (French) Zbl 1284.11094 J. Reine Angew. Math. 666, 35-82 (2012). Reviewer: Przemyslaw Chojecki (Otrebusy) MSC: 11G18 11F80 11F85 11F46 PDF BibTeX XML Cite \textit{V. Pilloni}, J. Reine Angew. Math. 666, 35--82 (2012; Zbl 1284.11094) Full Text: DOI
Urban, Eric Eigenvarieties for reductive groups. (English) Zbl 1285.11081 Ann. Math. (2) 174, No. 3, 1685-1784 (2011). MSC: 11F85 22E55 11F75 PDF BibTeX XML Cite \textit{E. Urban}, Ann. Math. (2) 174, No. 3, 1685--1784 (2011; Zbl 1285.11081) Full Text: DOI
Dummigan, Neil; Ibukiyama, Tomoyoshi; Katsurada, Hidenori Some Siegel modular standard \(L\)-values, and Shafarevich-Tate groups. (English) Zbl 1254.11046 J. Number Theory 131, No. 7, 1296-1330 (2011). Reviewer: Nathan Ryan (Lewisburg) MSC: 11F46 11F67 11F80 11G40 PDF BibTeX XML Cite \textit{N. Dummigan} et al., J. Number Theory 131, No. 7, 1296--1330 (2011; Zbl 1254.11046) Full Text: DOI
Mazur, Barry How can we construct abelian Galois extensions of basic number fields? (English) Zbl 1228.11163 Bull. Am. Math. Soc., New Ser. 48, No. 2, 155-209 (2011). Reviewer: Florin Nicolae (Berlin) MSC: 11R18 11-02 11R37 PDF BibTeX XML Cite \textit{B. Mazur}, Bull. Am. Math. Soc., New Ser. 48, No. 2, 155--209 (2011; Zbl 1228.11163) Full Text: DOI
Brown, Jim Special values of \(L\)-functions on \(\text{GSp}_4\times\text{GL}_2\) and the non-vanishing of Selmer groups. (English) Zbl 1239.11059 Int. J. Number Theory 6, No. 8, 1901-1926 (2010). Reviewer: Nathan Ryan (Lewisburg) MSC: 11F67 11F33 11F46 11F32 PDF BibTeX XML Cite \textit{J. Brown}, Int. J. Number Theory 6, No. 8, 1901--1926 (2010; Zbl 1239.11059) Full Text: DOI
Dummigan, Neil Symmetric square \(L\)-functions and Shafarevich-Tate groups. II. (English) Zbl 1229.11078 Int. J. Number Theory 5, No. 7, 1321-1345 (2009). MSC: 11F67 11G40 11F33 11F46 11F80 PDF BibTeX XML Cite \textit{N. Dummigan}, Int. J. Number Theory 5, No. 7, 1321--1345 (2009; Zbl 1229.11078) Full Text: DOI
Sorensen, Claus M. Level-raising for Saito-Kurokawa forms. (English) Zbl 1233.11047 Compos. Math. 145, No. 4, 915-953 (2009). MSC: 11F33 11F41 11F70 11F27 PDF BibTeX XML Cite \textit{C. M. Sorensen}, Compos. Math. 145, No. 4, 915--953 (2009; Zbl 1233.11047) Full Text: DOI