Bux, Kai-Uwe Higher finiteness properties of braided groups. (English) Zbl 07219050 Baake, Michael (ed.) et al., Spectral structures and topological methods in mathematics. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-197-2/hbk; 978-3-03719-697-7/ebook). EMS Series of Congress Reports, 299-321 (2019). MSC: 20F36 57 PDF BibTeX XML Cite \textit{K.-U. Bux}, in: Spectral structures and topological methods in mathematics. Zürich: European Mathematical Society (EMS). 299--321 (2019; Zbl 07219050) Full Text: DOI
Dehornoy, Patrick; Tesson, Emilie Garside combinatorics for Thompson’s monoid \(F^+\) and a hybrid with the braid monoid \(B_{\infty }^{+}\). (English) Zbl 1422.05106 Algebr. Comb. 2, No. 4, 683-709 (2019). Reviewer: Laura Colmenarejo Hernando (Leipzig) MSC: 05E15 20M05 20E22 20F36 68Q42 PDF BibTeX XML Cite \textit{P. Dehornoy} and \textit{E. Tesson}, Algebr. Comb. 2, No. 4, 683--709 (2019; Zbl 1422.05106) Full Text: DOI
Dehornoy, Patrick The braid shelf. (English) Zbl 1425.20021 J. Knot Theory Ramifications 27, No. 11, Article ID 1843005, 30 p. (2018). Reviewer: Ioannis Diamantis (Beijing) MSC: 20F36 20N02 57M25 57M60 PDF BibTeX XML Cite \textit{P. Dehornoy}, J. Knot Theory Ramifications 27, No. 11, Article ID 1843005, 30 p. (2018; Zbl 1425.20021) Full Text: DOI
Bux, Kai-Uwe; Fluch, Martin G.; Marschler, Marco; Witzel, Stefan; Zaremsky, Matthew C. B. The braided Thompson’s groups are of type \(F_\infty\). (English) Zbl 1397.20053 J. Reine Angew. Math. 718, 59-101 (2016). MSC: 20F65 20F36 20J05 57M07 20E32 PDF BibTeX XML Cite \textit{K.-U. Bux} et al., J. Reine Angew. Math. 718, 59--101 (2016; Zbl 1397.20053) Full Text: DOI arXiv
Dehornoy, Patrick; van Oostrom, Vincent Using groups for investigating rewrite systems. (English) Zbl 1157.03015 Math. Struct. Comput. Sci. 18, No. 6, 1133-1167 (2008). MSC: 03D03 03D40 20M05 68Q42 PDF BibTeX XML Cite \textit{P. Dehornoy} and \textit{V. van Oostrom}, Math. Struct. Comput. Sci. 18, No. 6, 1133--1167 (2008; Zbl 1157.03015) Full Text: DOI
Birget, Jean-Camille Factorizations of the Thompson-Higman groups, and circuit complexity. (English) Zbl 1186.68203 Int. J. Algebra Comput. 18, No. 2, 285-320 (2008). MSC: 68Q15 68Q17 20F10 94C10 20F05 PDF BibTeX XML Cite \textit{J.-C. Birget}, Int. J. Algebra Comput. 18, No. 2, 285--320 (2008; Zbl 1186.68203) Full Text: DOI arXiv
Brin, Matthew G. The algebra of strand splitting. I: A braided version of Thompson’s group \(V\). (English) Zbl 1169.20021 J. Group Theory 10, No. 6, 757-788 (2007). MSC: 20F65 20F05 20F36 20F55 57S25 PDF BibTeX XML Cite \textit{M. G. Brin}, J. Group Theory 10, No. 6, 757--788 (2007; Zbl 1169.20021) Full Text: DOI arXiv
Dehornoy, Patrick Free augmented LD-systems. (English) Zbl 1127.20049 J. Algebra Appl. 6, No. 1, 173-187 (2007). Reviewer: Miklos Csikós (Gödöllő) MSC: 20N02 20F36 08B20 PDF BibTeX XML Cite \textit{P. Dehornoy}, J. Algebra Appl. 6, No. 1, 173--187 (2007; Zbl 1127.20049) Full Text: DOI
Dehornoy, Patrick The group of parenthesized braids. (English) Zbl 1160.20027 Adv. Math. 205, No. 2, 354-409 (2006). MSC: 20F36 57M25 57S05 20N02 PDF BibTeX XML Cite \textit{P. Dehornoy}, Adv. Math. 205, No. 2, 354--409 (2006; Zbl 1160.20027) Full Text: DOI
Dehornoy, Patrick Geometric presentations for Thompson’s groups. (English) Zbl 1150.20016 J. Pure Appl. Algebra 203, No. 1-3, 1-44 (2005). MSC: 20F05 20F36 20N02 PDF BibTeX XML Cite \textit{P. Dehornoy}, J. Pure Appl. Algebra 203, No. 1--3, 1--44 (2005; Zbl 1150.20016) Full Text: DOI
Brin, Matthew G. Presentations of higher dimensional Thompson groups. (English) Zbl 1135.20022 J. Algebra 284, No. 2, 520-558 (2005). MSC: 20F05 20E32 57S25 PDF BibTeX XML Cite \textit{M. G. Brin}, J. Algebra 284, No. 2, 520--558 (2005; Zbl 1135.20022) Full Text: DOI arXiv