×

zbMATH — the first resource for mathematics

Möbius inversion formula for monoids with zero. (English) Zbl 1242.20065
The Möbius inversion formula, introduced during the 19th century in number theory, was generalized to a wide class of monoids called locally finite such as the free partially commutative, plactic and hypoplactic monoids for instance. A ‘locally finite monoid with zero’ is a monoid with zero \(M\) such that for any \(x\in M_0=M-\{0_M\}\) the set \(\{(n,x_1,\dots,x_n):x=x_1\cdots x_n,\;x_i\neq 1_M\}\) is finite [see P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements. Berlin-Heidelberg-New York: Springer-Verlag (1969; Zbl 0186.30101); S. Eilenberg, Automata, languages, and machines. Vol. A. New York-London: Academic Press (1974; Zbl 0317.94045)].
In this contribution are developed and used some topological and algebraic notions for monoids with zero, similar to ordinary objects such as the total contracted monoid algebra, the augmentation ideal or the star operation on proper series. The main concern is to extend the study of the Möbius function to some monoids with zero, in particular, the so-called Rees quotients of locally finite monoids. The development of a system of algebraic and topological notions gives the possibility for a systematic and rigorous treatment of the Möbius inversion formula for locally finite monoids with zero.

MSC:
20M10 General structure theory for semigroups
20M25 Semigroup rings, multiplicative semigroups of rings
20M30 Representation of semigroups; actions of semigroups on sets
11A25 Arithmetic functions; related numbers; inversion formulas
05A10 Factorials, binomial coefficients, combinatorial functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, Berlin (1976) · Zbl 0335.10001
[2] Arendt, B.D., Stuth, C.J.: On partial homomorphisms of semigroups. Pac. J. Math. 35(1), 7–9 (1970) · Zbl 0209.32504
[3] Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs in Theoretical Computer Science, vol. 12. Springer, Berlin (1988) · Zbl 0668.68005
[4] Bourbaki, N.: Elements of Mathematics–Algebra. Springer, Berlin (1989), Chaps. 1–3
[5] Bourbaki, N.: Elements of Mathematics–General Topology. Springer, Berlin (2006), Chaps. 5–10
[6] Bourbarki, N.: Elements of Mathematics–Commutative Algebra. Springer, Berlin (2006), Chaps. 1–4
[7] Brown, T.C.: On locally finite semigroups. Ukr. Math. J. 20, 631–636 (1968) · Zbl 0214.03503 · doi:10.1007/BF01085231
[8] Cartier, P., Foata, D.: Problèmes Combinatoires de Commutation et Réarrangements. Lecture Notes in Mathematics, vol. 85. Springer, Berlin (1969) · Zbl 0186.30101
[9] Clifford, A.H.: Partial homomorphic images of Brandt groupoids. Proc. Am. Math. Soc. 16(3), 538–544 (1965) · Zbl 0133.27602 · doi:10.1090/S0002-9939-1965-0177053-0
[10] Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Mathematical Surveys, vol. 7. American Mathematical Society, Providence (1961) · Zbl 0111.03403
[11] Cohn, P.M.: Further Algebra and Applications. Springer, Berlin (2003) · Zbl 1006.00001
[12] Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994) · Zbl 0818.46076
[13] Doubilet, P., Rota, G.-C., Stanley, R.P.: The idea of generating function. In: Rota, G.-C. (ed.) Finite Operator Calculus, pp. 83–134. Academic Press, San Diego (1975)
[14] Duchamp, G.H.E., Krob, D.: Partially commutative formal power series. In: Proceedings of the LITP Spring School on Theoretical Computer Science on Semantics of Systems of Concurrent Processes, pp. 256–276 (1990)
[15] Duchamp, G.H.E., Krob, D.: Plactic-growth-like monoids. In: Ito, M., Jürgensen, H. (eds.) Words, Languages and Combinatorics II, Kyoto, Japan 1992, pp. 124–142 (1994) · Zbl 0875.68720
[16] Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, San Diego (1974) · Zbl 0317.94045
[17] Ésik, Z.: Iteration semirings. In: Proceedings of the 12th International Conference on Developments in Language Theory, Kyoto, Japan. Lecture Notes in Computer Science, vol. 5257, pp. 1–20. Springer, Berlin (2008) · Zbl 1161.68598
[18] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009) · Zbl 1165.05001
[19] Grillet, P.A.: Semigroups: An Introduction to the Structure Theory. Monographs and Textbooks in Pure and Applied Mathematics. Dekker, New York (1995) · Zbl 0830.20079
[20] Hivert, F., Novelli, J.-C., Thibon, J.-Y.: Un analogue du monoïde plaxique pour les arbres binaires de recherche. C. R. Acad. Sci. Paris Sr. I Math. 332, 577–580 (2002) · Zbl 1013.05026
[21] Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at q=0. J. Algorithms Comb. 6(4), 339–376 (1997) · Zbl 0881.05120 · doi:10.1023/A:1008673127310
[22] Mc Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, Berlin (1998) · Zbl 0906.18001
[23] Lascoux, A., Schützenberger, M.P.: Le monoïde plaxique. In: Luca, De, A. (ed.) Non-commutative Structures in Algebra and Geometric Combinatorics, Quaderni de la ricerca scientifica, vol. 109, pp. 129–156. C.N.R., Rome (1981)
[24] Novelli, J.-C.: On the hypoplactic monoid. Discrete Math. 217(1), 315–336 (2000) · Zbl 0960.05106 · doi:10.1016/S0012-365X(99)00270-8
[25] Novikov, B.V.: 0-cohomology of semigroups. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 5, pp. 189–210. Elsevier, Amsterdam (2008) · Zbl 1213.20066
[26] Novikov, B.V., Polyakova, L.Y.: On 0-homology of categorical at zero semigroups. Cent. Eur. J. Math. 7(2), 165–175 (2009) · Zbl 1182.20059 · doi:10.2478/s11533-009-0001-z
[27] Okniński, J.: Semigroup Algebras. Pure and Applied Algebra: A Series of Monographs and Textbooks, vol. 138. Dekker, Berlin (1990)
[28] Shevrin, L.N.: On locally finite semigroups. Sov. Math. Dokl. 6, 769–772 (1965) · Zbl 0144.01105
[29] Stanley, R.P.: Enumerative Combinatorics, vol. 1. University Press, Cambridge (1996) · Zbl 0978.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.