×

zbMATH — the first resource for mathematics

A case for Lorentzian relativity. (English) Zbl 1302.81098
Summary: The Lorentz transformation (LT) is explained by changes occurring in the wave characteristics of matter as it changes inertial frame. This explanation is akin to that favoured by Lorentz, but informed by later insights, due primarily to de Broglie, regarding the underlying unity of matter and radiation. To show the nature of these changes, a massive particle is modelled as a standing wave in three dimensions. As the particle moves, the standing wave becomes a travelling wave having two factors. One is a carrier wave displaying the dilated frequency and contracted ellipsoidal form described by the LT, while the other (identified as the de Broglie wave) is a modulation defining the dephasing of the carrier wave (and thus the failure of simultaneity) in the direction of travel. The superluminality of the de Broglie wave is thus explained, as are several other mysterious features of the optical behaviour of matter, including the physical meaning of the Schrödinger equation and the relevance to scattering processes of the de Broglie wave vector. Consideration is given to what this Lorentzian approach to relativity might mean for the possible existence of a preferred frame and the origin of the observed Minkowski metric.

MSC:
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Einstein, A.: Zur elektrodynamik bewegter korper. Ann. Phys. 17, 891 (1905). (English trans.: On the electrodynamics of moving bodies. In: Lorentz, H. A., Einstein, A., Minkowski, H., Weyl, H.: The Principle of Relativity, Methuen, London, 1923) · JFM 36.0920.02
[2] Minkowski, H.: Raum und Zeit. Phys. Zeits. 10, 104 (1909). (English trans.: Space and time. In: Lorentz, H. A., Einstein, A., Minkowski, H., Weyl, H.: The Principle of Relativity, Methuen, London, 1923)
[3] Rindler, W.: Relativity, Special, General, and Cosmological, 2nd edn. Oxford University Press, Oxford (2006) · Zbl 0981.83001
[4] Bell, J.S.: How to teach Special Relativity. Prog. Sci. Cult. 1, 2 (1976). (Reprinted in: Speakable and Unspeakable in Quantum Mechanics. Revised edn. Cambridge University Press, Cambridge, 2004) · Zbl 1239.81001
[5] Brown, HS; Pooley, O; Dieks, D (ed.), Minkowski space-time: a glorious non-entity, (2006), Amsterdam
[6] Brown, H.S.: Physical Relativity. Oxford University Press, Oxford (2005) · Zbl 1084.83001
[7] Miller, DJ, A constructive approach to the special theory of relativity, Am. J. Phys., 78, 633, (2010)
[8] Nelson, W.M.: A wave-centric view of special relativity. arXiv:1305.3022 [physics.class-ph] (2013)
[9] de Broglie, L.: Recherches sur la thé orie des quanta, PhD Thesis. Ann. de Phys. 10 3, 22 (1925). (English trans. Researches on the quantum theory. In: Ann. Fond. Louis de Broglie 17, 92, 1992) · JFM 46.1292.02
[10] FitzGerald, GF, The ether and the earth’s atmosphere, Science, 13, 390, (1889)
[11] Lorentz, H.A.: De relatieve beweging van de aarde en den aether. Zittingsverlag Akad. v. Wet. 1, 74 (1892). (English trans. The relative motion of the earth and the aether. In: Zeeman, P., Fokker, A.D. (eds.) Collected Papers. Nijhoff, The Hague, 1937)
[12] Heaviside, O, The electromagnetic effects of a moving charge, The Electrician, 22, 147, (1888) · JFM 20.1167.01
[13] Larmor, J.: Aether and Matter. Cambridge University Press, Cambridge (1900) · JFM 31.0759.01
[14] Poincaré, H, Sur la dynamique de l’électron, Rendiconti del Circolo matematico di Palermo, 21, 129, (1906) · JFM 37.0886.01
[15] Reignier, J.: The birth of special relativity—One more essay on the subject. arXiv:physics/0008229 (2000). · Zbl 1194.01038
[16] Zahar, EG, Poincaré’s independent discovery of the relativity principle, Fundam. Sci., 4, 147, (1983)
[17] Lorentz, H.A.: The Theory of Electrons. Teubner, Leipzig (1916)
[18] Wolff, M, Fundamental laws, microphysics and cosmology, Phys Essays, 6, 181, (1993)
[19] de la Peña, L., Cetto, A.M.: The Quantum Dice: an Introduction to Stochastic Electrodynamics. Kluwer Academic, Dordrecht (1996)
[20] Masreliez, C.J.: The Expanding Spacetime Theory. Nu, Corvallis (2000) · Zbl 0965.83047
[21] Baylis, WE, De Broglie waves as an effect of clock synchronization, Can. J. Phys., 85, 1317, (2007)
[22] Keilman, Y.: Classical interpretation of de Broglie’s waves. http://gsjournal.net. Accessed 2 Dec 2012 · Zbl 1281.83007
[23] Dorling, J; Kilmister, C (ed.), Schrödinger’s original interpretation of the Schrödinger equation: a rescue attempt, (1987), Cambridge
[24] Wheeler, JA; Feynman, RP, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys., 17, 157, (1945)
[25] Wheeler, JA; Feynman, RP, Classical electrodynamics in terms of direct interparticle action, Rev. Mod. Phys., 21, 425, (1949) · Zbl 0034.27801
[26] Aspect, A; Dalibard, J; Roger, G, Experimental test of bell’s inequalities using time-varying analyzers, Phys. Rev. Lett., 49, 1804, (1982)
[27] Weihs, G; Jennewein, T; Simon, C; Weinfurter, H; Zeilinger, A, Violation of bell’s inequality under strict Einstein locality conditions, Phys. Rev. Lett., 81, 5039, (1998) · Zbl 0947.81013
[28] Shimony, A; etal.; Kamefuchi, S (ed.), Controllable and uncontrollable non-locality, 225, (1983), Tokyo
[29] Kostro, L.: Einstein and the Ether. Apeiron, Montreal (2000) · Zbl 1064.83001
[30] Kretschmann, E, Über den physikalischen sinn der relativitätspostulate. A. einsteins neue und seine ursprüngliche relativitätstheorie, Ann. Phys., 53, 575, (1917) · JFM 46.1292.01
[31] Norton, JD, General covariance and the foundations of general relativity: eight decades of dispute, Rep. Prog. Phys., 56, 791, (1993)
[32] Dieks, D, Another look at general covariance and the equivalence of reference frames, Stud. Hist. Philos. Mod. Phys., 37, 174, (2006) · Zbl 1222.82007
[33] Giovanelli, M, Erich Kretschmann as a proto-logical-empiricist: adventures and misadventures of the point-coincidence argument, Stud. Hist. Philos. Mod. Phys., 44, 155, (2013) · Zbl 1281.83007
[34] Einstein, A, Prinzipielles zur allgemeinen relativit ätstheorie, Ann. Phys., 55, 240, (1918) · JFM 46.1292.02
[35] Winterberg, F, Gamma ray bursters and Lorentzian relativity, Z. Naturforsch., 56A, 889, (2001)
[36] Crispino, LCB; Higuchi, A; Matsas, GEA, The Unruh effect and its applications, Rev. Mod. Phys., 80, 787, (2008) · Zbl 1205.83030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.