×

zbMATH — the first resource for mathematics

GPU implementations of the Bond fluctuation model. (English) Zbl 1245.82090
Summary: We present two parallel implementations of the bond fluctuation model on graphics processors that outperform by a factor of up to 50 an equivalent implementation on a single CPU. The first algorithm is a parallelized version of an accelerated MC method published earlier [S. Nedelcu and J.-U. Sommer, “Single chain dynamics in polymer networks: a Monte Carlo study”, J. Chem. Phys. 130, No. 20, 204902 (2009; doi:10.1063/1.3143182)]. In this first algorithm, we use the parallel domain decomposition technique to avoid monomer collisions. In contrast, in the second algorithm, we associate each monomer with a parallel process, where all monomers in the system are attempted to move simultaneously. In both cases, only monomer moves that result in allowed bonds and preserve lattice occupancy are accepted. To validate the correctness of the graphics processing unit (GPU) algorithms, we simulated monodisperse polymer melts at monomer number density 0.5 and compared static and dynamical properties with standard CPU implementations. We found good agreement between the CPU and the GPU results, which demonstrates the equivalence of the serial and parallel implementations. The influence of higher monomer number density is discussed.

MSC:
82D60 Statistical mechanical studies of polymers
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)
65C05 Monte Carlo methods
65Y05 Parallel numerical computation
65Y10 Numerical algorithms for specific classes of architectures
82-08 Computational methods (statistical mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] NVIDIA CUDA Compute Unified Device Architecture, Programming Guide, Version 3.2, 2010.
[2] Nickolls, J.; Dally, W.J., The GPU computing era, IEEE micro, March/April, 56-69, (2010)
[3] ()
[4] Rapaport, D.C., Enhanced molecular dynamics performance with programmable graphics processor, Comput. phys. commun., 182, 926-934, (2011) · Zbl 1221.82013
[5] Anderson, J.A.; Lorenz, C.D.; Travesset, A., A general purpose molecular dynamics simulations fully implemented on graphics processing units, J. comput. phys., 227, 5342-5359, (2008) · Zbl 1148.81301
[6] Harvey, M.J.; De Fabritiis, G., An implementation of the smooth particle mesh ewald method on GPU hardware, J. chem. theor. comput., 5, 2371-2377, (2009)
[7] Schmid, N.; Btschi, M.; van Gunsteren, W., A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software, J. comput. chem., 32, 1636-1643, (2010)
[8] Kuznik, F.; Obrecht, C.; Rusaouen, G.; Roux, J.-J., LBM based flow simulation using GPU computing processor, Comput. math. appl., 59, 2380-2392, (2010) · Zbl 1193.76112
[9] Januszewski, M.; Kostur, M., Accelerating numerical solution of stochastic differential equations with CUDA, Comput. phys. commun., 181, 183-188, (2010) · Zbl 1205.65024
[10] Preis, T.; Virnau, P.; Paul, W.; Schneider, J.J., GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model, J. comput. phys., 228, 4468-4477, (2009) · Zbl 1167.82347
[11] Carmesin, I.; Kremer, K., The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions, Macromolecules, 21, 2819-2823, (1988)
[12] Sommer, J.-U.; Lay, S., Topological structure and nonaffine swelling of bimodal polymer networks, Macromolecules, 35, 9832-9843, (2002)
[13] Werner, M.; Sommer, J.-U., Polymer-decorated tethered membranes under good- and poor-solvent conditions, Eur. phys. J. E, 31, 383-392, (2010)
[14] Di Cecca, A.; Freire, J.J., Monte Carlo simulation of star polymer systems with the bond fluctuation model, Macromolecules, 25, 2851-2858, (2002)
[15] Subramanian, G.; Shanbhag, S., Conformational free energy of melts of ring-linear polymer blends, Phys. rev. E, 80, 041806, (2009)
[16] Lang, M.; Sommer, J.-U., Analysis of entanglement length and segmental order parameter in polymer networks, Phys. rev. lett., 104, 177801, (2010)
[17] Nedelcu, S.; Sommer, J.-U., Single chain dynamics in polymer networks: a Monte Carlo study, J. chem. phys., 130, 204902, (2009)
[18] Nedelcu, S.; Sommer, J.-U., Single-chain dynamics in frozen polymer networks, Rheol. acta, 49, 485494, (2010)
[19] Kirkpatrick, S.; Stoll, E.P., A very fast shift-register sequence random number generator, J. comput. phys., 40, 517-526, (1981) · Zbl 0458.65003
[20] Ladd, A.J.C., A fast random number generator for stochastic simulations, Comput. phys. commun., 180, 2140-2142, (2009) · Zbl 1197.65009
[21] Demchik, V., Pseudo-random number generators for Monte Carlo simulations on ATI graphics processing units, Comput. phys. commun., 182, 692-705, (2011) · Zbl 1217.65007
[22] Matsumoto, M.; Nishimura, T., Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator, ACM trans. model. comput. simul., 8, 3-30, (1998) · Zbl 0917.65005
[23] NVIDIA CUDA Toolkit. <http://developer.nvidia.com/cuda-toolkit-32-downloads>.
[24] OpenCL. <http://www.khronos.org/opencl/>.
[25] AMD APP Profiler. <http://developer.amd.com/gpu/amdappprofiler/pages/default.aspx>.
[26] Binder, K.; Paul, W., Monte Carlo simulations of polymer dynamics: recent advances, J. polym. sci. B. polym. phys., 35, 1-31, (1997)
[27] Flory, P.J., Principles of polymer chemistry, (1953), Cornell University Press Ithaca, London
[28] Doi, M.; Edwards, S.F., The theory of polymer dynamics, (1986), Clarendon Press Oxford
[29] de Gennes, P.G., Scaling concepts in polymer physics, (1979), Cornell University Press Ithaca, New York
[30] Pakula, T.; Geyler, S.; Edling, T.; Boese, D., Relaxation and viscoelastic properties of complex polymer systems, Rheol. acta, 35, 631-644, (1996)
[31] Graessley, W.W., Polymeric liquids and networks dynamics and rheology, (2008), Taylor & Francis Group London, New York
[32] Kreer, T.; Baschnagel, J.; Muller, M.; Binder, K., Monte Carlo simulation of long chain polymer melts: crossover from rouse to reptation dynamics, Macromolecules, 34, 1105-1117, (2001)
[33] Deutsch, H.P.; Binder, K., Interdiffusion and self-diffusion in polymer mixtures: a Monte Carlo study, J. chem. phys., 94, 2294-2304, (1990)
[34] Michalke, W.; Lang, M.; Kreitmeier, S.; Goritz, D., Comparison of topological properties between end-linked and statistically cross-linked polymer networks, J. chem. phys., 117, 6300-6307, (2002)
[35] Paul, W.; Binder, K.; Heermann, D.W.; Kremer, K., Crossover scaling in semidilute polymer solutions: a Monte Carlo test, J. phys. II, 1, 37-60, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.