Alotaibi, A. M.; El-Moneam, M. A.; Noorani, M. S. M. On the rational difference equation \(y_{{n+1}}={\frac{\alpha_{0}y_{{n}}+\alpha_{1}y_{{n-p}}+\alpha_{2}y_{{n-q}} +\alpha_{3}y_{{n-r}}+\alpha_{4}y_{{n-s}}}{\beta_{0}y_{{n}}+\beta_{1}y_{{n-p}}+\beta_{2}y_{{n-q}}+\beta_{3}y_{{n-r}}+\beta_{4}y_{{n-s}}}}\). (English) Zbl 1438.39006 J. Nonlinear Sci. Appl. 11, No. 1, 80-97 (2018). MSC: 39A20 39A22 39A30 PDF BibTeX XML Cite \textit{A. M. Alotaibi} et al., J. Nonlinear Sci. Appl. 11, No. 1, 80--97 (2018; Zbl 1438.39006) Full Text: DOI
El-Moneam, M. A.; Zayed, E. M. E. On the dynamics of the nonlinear rational difference equation \(x_{n+1}=Ax_{n}+Bx_{n-k}+Cx_{n-l}+\frac{bx_{n-k}}{dx{n-k}-ex{n-1}}\). (English) Zbl 1328.39002 J. Egypt. Math. Soc. 23, No. 3, 494-499 (2015). MSC: 39A10 39A30 34C99 PDF BibTeX XML Cite \textit{M. A. El-Moneam} and \textit{E. M. E. Zayed}, J. Egypt. Math. Soc. 23, No. 3, 494--499 (2015; Zbl 1328.39002) Full Text: DOI
El-Dessoky, M. M. Qualitative behavior of rational difference equation of big order. (English) Zbl 1264.39013 Discrete Dyn. Nat. Soc. 2013, Article ID 495838, 6 p. (2013). MSC: 39A22 PDF BibTeX XML Cite \textit{M. M. El-Dessoky}, Discrete Dyn. Nat. Soc. 2013, Article ID 495838, 6 p. (2013; Zbl 1264.39013) Full Text: DOI
Atawna, S.; Abu-Saris, R.; Hashim, I. Local stability of period two cycles of second order rational difference equation. (English) Zbl 1255.39013 Discrete Dyn. Nat. Soc. 2012, Article ID 969813, 11 p. (2012). MSC: 39A30 PDF BibTeX XML Cite \textit{S. Atawna} et al., Discrete Dyn. Nat. Soc. 2012, Article ID 969813, 11 p. (2012; Zbl 1255.39013) Full Text: DOI
Li, Xianyi; Zhou, Li A note for “On the rational recursive sequence \(x_{n+1}=\frac{A+\sum^k_{i=0} \alpha_i x_{n-i}}{\sum^k_{i=0} \beta_ix_{n-i}}\)”. (English) Zbl 1320.39015 Arab J. Math. Sci. 18, No. 1, 15-24 (2012). Reviewer: Stevo Stević (MR2494777) MSC: 39A22 39A21 PDF BibTeX XML Cite \textit{X. Li} and \textit{L. Zhou}, Arab J. Math. Sci. 18, No. 1, 15--24 (2012; Zbl 1320.39015) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the global attractivity of two nonlinear difference equations. (English. Russian original) Zbl 1290.37007 J. Math. Sci., New York 177, No. 3, 487-499 (2011); translation from Sovrem. Mat. Prilozh. 70 (2011). MSC: 37B25 PDF BibTeX XML Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=Ax_{n}+Bx_{n-k}+\frac{\beta x_{n}+\gamma x_{n-k}}{cx_{n}+Dx_{n-k}}\). (English) Zbl 1204.39008 Acta Appl. Math. 111, No. 3, 287-301 (2010). Reviewer: N. C. Apreutesei (Iaşi) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Acta Appl. Math. 111, No. 3, 287--301 (2010; Zbl 1204.39008) Full Text: DOI EuDML
Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence \(x_{n+1}=\frac{\alpha + \beta x_{n-k}}{\gamma-x_{n}}\). (English) Zbl 1181.39014 J. Appl. Math. Comput. 31, No. 1-2, 229-237 (2009). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A30 39A23 39A22 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, J. Appl. Math. Comput. 31, No. 1--2, 229--237 (2009; Zbl 1181.39014) Full Text: DOI